Przeglądaj wg Autor "Gano, Marcin"
Teraz wyświetlane 1 - 9 z 9
Wyników na stronę
Opcje sortowania
Pozycja Brak dostępu Chiralne ciecze jonowe na bazie związków terpenowych : ich synteza i zastosowanie(Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, 2021) Gano, Marcin; Janus, Ewa promotor; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii ChemicznejPozycja Open Access CO2 Reduction to Valuable Chemicals on TiO2-Carbon Photocatalysts Deposited on Silica Cloth(MDPI, 2021-12-28) Morawski, Antoni Waldemar; Ćmielewska, Katarzyna; Witkowski, Kordian; Kusiak-Nejman, Ewelina; Pełech, Iwona; Staciwa, Piotr; Ekiert, Ewa; Sibera, Daniel; Wanag, Agnieszka; Gano, Marcin; Narkiewicz, UrszulaA new photocatalyst for CO2 reduction has been presented. The photocatalyst was prepared from a combination of a commercial P25 with a mesopore structure and carbon spheres with a microporous structure with high CO2 adsorption capacity. Then, the obtained hybrid TiO2-carbon sphere photocatalysts were deposited on a glass fiber fabric. The combined TiO2-carbon spheres/silica cloth photocatalysts showed higher efficiency in the two-electron CO2 reduction towards CO than in the eight-electron reaction to methane. The 0.5 g graphitic carbon spheres combined with 1 g of TiO2 P25 resulted in almost 100% selectivity to CO. From a practical point of view, this is promising as it economically eliminates the need to separate CO from the gas mixture after the reaction, which also contains CH4 and H2.Pozycja Open Access CO2 Reduction to Valuable Chemicals on TiO2-Carbon Photocatalysts Deposited on Silica Cloth(MDPI, 2021-12-28) Morawski, Antoni W.; Cmielewska, Katarzyna; Witkowski, Kordian; Kusiak-Nejman, Ewelina; Pelech, Iwona; Staciwa, Piotr; Ekiert, Ewa; Sibera, Daniel; Wanag, Agnieszka; Gano, Marcin; Narkiewicz, Urszula; Zachodniopomorski Uniwersytet Technologiczny w SzczecinieA new photocatalyst for CO2 reduction has been presented. The photocatalyst was prepared from a combination of a commercial P25 with a mesopore structure and carbon spheres with a microporous structure with high CO2 adsorption capacity. Then, the obtained hybrid TiO2-carbon sphere photocatalysts were deposited on a glass fiber fabric. The combined TiO2-carbon spheres/silica cloth photocatalysts showed higher efficiency in the two-electron CO2 reduction towards CO than in the eight-electron reaction to methane. The 0.5 g graphitic carbon spheres combined with 1 g of TiO2 P25 resulted in almost 100% selectivity to CO. From a practical point of view, this is promising as it economically eliminates the need to separate CO from the gas mixture after the reaction, which also contains CH4 and H-2.Pozycja Open Access Effective green ammonia synthesis from gaseous nitrogen and CO2 saturated-water vapour utilizing a novel photocatalytic reactor(ScienceDirect, 2022-10-15) Morawski, Antoni Waldemar; Ćmielewska, Katarzyna; Ekiert, Ewa; Kusiak‐Nejman, Ewelina; Pełech, Iwona; Staciwa, Piotr; Sibera, Daniel; Wanag, Agnieszka; Kapica‐Kozar, Joanna; Gano, Marcin; Lendzion-Bieluń, Zofia; Narkiewicz, UrszulaThe ammonia synthesis from nitrogen and hydrogen derived from water vapor in the photocatalytic process performed under mild conditions is presented. A new solution of a gas-phase photocatalytic reactor with the bed in the form of a UV transparent glass fiber cloth coated with AEROXIDE® P25 TiO2 was applied. The bed in the reactor is located just above the water surface. The gases circulate from above towards the water surface, where the produced ammonia is easily absorbed and continuously separated from the gas phase, shifting the ammonia synthesis equilibrium towards the product. The highest amount of ammonia (about 1.3 mmol NH4+/g TiO2 after 6 h) was obtained at 20 °C, and with the use of the gaseous mixture containing CO2 (15%), N2 (85%), and water vapour derived from water located at the bottom of the reactor. Carbon dioxide in the reaction environment is simultaneously reduced to carbon monoxide and methane.Pozycja Open Access New Insight on Carbon Dioxide-Mediated Hydrogen Production(Chemistry Europe, European Chemical Societies Publishing, 2022-04-03) Morawski, Antoni W.; Kusiak-Nejman, Ewelina; Pełech, Iwona; Cmielewska, Katarzyna; Sibera, Daniel; Staciwa, Piotr; Wanag, Agnieszka; Gano, Marcin; Ekiert, Ewa; Kapica-Kozar, Joanna; Witkowski, Kordian; Narkiewicz, Urszula; Zachodniopomorski Uniwersytet Technologiczny w SzczecinieA new approach to hydrogen production from water is described. This simple method is based on carbon dioxide-mediated water decomposition under UV radiation. The water contained dissolved sodium hydroxide, and the solution was saturated with gaseous carbon dioxide. During saturation, the pH decreased from about 11.5 to 7-8. The formed bicarbonate and carbonate ions acted as scavengers for hydroxyl radicals, preventing the recombination of hydroxyl and hydrogen radicals and prioritizing hydrogen gas formation. In the presented method, not yet reported in the literature, hydrogen production is combined with carbon dioxide. For the best system with alkaline water (0.2 m NaOH) saturated with CO2 under UV-C, the hydrogen production amounted to 0.6 mu mol h(-1) during 24 h of radiation.Pozycja Open Access New Insight on Carbon Dioxide–Mediated Hydrogen Production(Chemistry Europe, 2022-04-03) Morawski, Antoni Waldemar; Kusiak-Nejman, Ewelina; Pełech, Iwona; Ćmielewska, Katarzyna; Sibera, Daniel; Staciwa, Piotr; Wanag, Agnieszka; Gano, Marcin; Ekiert, Ewa; Kapica‐Kozar, Joanna; Witkowski, Kordian; Narkiewicz, UrszulaA new approach to hydrogen production from water is described. This simple method is based on carbon dioxide-mediated water decomposition under UV radiation. The water contained dissolved sodium hydroxide, and the solution was saturated with gaseous carbon dioxide. During saturation, the pH decreased from about 11.5 to 7–8. The formed bicarbonate and carbonate ions acted as scavengers for hydroxyl radicals, preventing the recombination of hydroxyl and hydrogen radicals and prioritizing hydrogen gas formation. In the presented method, not yet reported in the literature, hydrogen production is combined with carbon dioxide. For the best system with alkaline water (0.2 m NaOH) saturated with CO2 under UV-C, the hydrogen production amounted to 0.6 μmol h−1 during 24 h of radiation.Pozycja Open Access On the Selectivity of Simultaneous CO2 and N2 Reduction Using TiO2/Carbon Sphere Photocatalysts Prepared by Microwave Treatment and Mounted on Silica Cloth(MDPI, 2023-08-24) Kusiak-Nejman, Ewelina; Ćmielewska, Katarzytna; Pełech, Iwona; Ekiert, Ewa; Staciwa, Piotr; Sibera, Daniel; Wanag, Agnieszka; Kapica-Kozar, Joanna; Gano, Marcin; Narkiewicz, Urszula; Morawski, Antoni Waldemar; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Budownictwa i Inżynierii Środowiska. Katedra Budownictwa Ogólnego; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Nieorganicznej i Inżynierii Środowiska; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Organicznej i Materiałów Polimerowych; West Pomeranian University of Technology in Szczecin. Faculty of Chemical Technology and Engineering. Department of Inorganic Chemical Technology and Environment Engineering; West Pomeranian University of Technology in Szczecin. Faculty of Civil and Environmental Engineering. Department of General Civil Engineering; West Pomeranian University of Technology in Szczecin. Faculty of Chemical Technology and Engineering. Department of Chemical Organic Technology and Polymeric MaterialsThis paper presents new photocatalysts obtained by treating carbon spheres (CS) and TiO2 in a microwave reactor at a pressure of 20 atm and a temperature of up to 300 °C for 15 min and then depositing TiO2/CS composites on glass fibre cloths. Such highly CO2-adsorbing photocatalysts showed photoactivity in the simultaneous water-splitting process, generating H2, reducing CO2 to CO and CH4, and reducing N2 to NH3. In addition, calculations of the hydrogen balance involved in all reactions were performed. Adding 1 g of carbon spheres per 1 g of TiO2 maintained the high selectivity of nitrogen fixation at 95.87–99.5%, which was continuously removed from the gas phase into the water as NH4+ ions.Pozycja Open Access Photocatalytic Reduction Efficiency of CO2 Depending on ZnO Particle Size(MDPI, 2023-09-03) Morawski, Antoni Waldemar; Gano, Marcin; Ćmielewska, Katarzyna; Kusiak-Nejman, Ewelina; Pełech, Iwona; Staciwa, Piotr; Ekiert, Ewa; Narkiewicz, Urszula; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Nieorganicznej i Inżynierii Środowiska; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Organicznej i Materiałów Polimerowych; West Pomeranian University of Technology in Szczecin. Faculty of Chemical Technology and Engineering. Department of Inorganic Chemical Technology and Environment Engineering; West Pomeranian University of Technology in Szczecin. Faculty of Chemical Technology and Engineering. Department of Organic Chemical Technology and Polymer MaterialsIn the face of increasing global carbon dioxide emissions and the urgent need to mitigate climate change, the development of efficient and sustainable strategies for CO2 conversion has gained significant attention. One of the methods of eliminating the harmful effects of CO2 is its photoreduction. In this paper, ZnO was used as an effective photocatalyst for the photoreduction of CO2 in a gas-phase system. The influence of particle size on the process efficiency was investigated. The ZnO materials applied in the studies were characterized using XRD, SEM, and low-temperature nitrogen adsorption (BET) methods. The pore volume distribution was calculated based on the DFT method. The investigation confirmed that it had a significant impact on the formation of the product of photocatalysis carbon dioxide. The main identified product was carbon monoxide. Hydrogen and methane were detected as well. Based on the results, it was found that the process efficiency was enhanced with decreasing ZnO particle size, and the most effective catalyst for the photoreduction of CO2 was the ZnO sample with the smallest particle size (18 nm).Pozycja Open Access Wybrane aspekty technologii wodorowych(Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie, 2024) Rakoczy, Rafał; Cheba, Katarzyna; Kusiak-Nejman, Ewelina; Ćmielewska, Katarzyna; Gano, Marcin; Pełech, Iwona; Narkiewicz, Urszula; Morawski, Antoni Waldemar; Pelka, Rafał; Ekiert, Ewa; Lendzion-Bieluń, Zofia; Markowska-Szczupak, Agata; Augustyniak, Adrian; Kochmańska, Agnieszka; Kochmański, Paweł; Zeńczak, Wojciech; Ubowska, Agnieszka; Mazurek, Przemysław; Schmidt, Beata; Wilpiszewska, Katarzyna; Malkowski, Arkadiusz; Schmidt, Beata; Wilpiszewska, Katarzyna; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Ekonomiczny; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Techniki Morskiej i Transportu; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Elektryczny; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Wydział Inżynierii Mechanicznej i Mechatroniki. Katedra Technologii Materiałowej; Wydział Inżynierii Mechanicznej i Mechatroniki. Katedra Technologii Materiałowej; Wydział Techniki Morskiej i Transportu. Katedra Inżynierii Bezpieczeństwa i Energetyki; Wydział Techniki Morskiej i Transportu. Katedra Inżynierii Bezpieczeństwa i Energetyki; Wydział Elektryczny. Katedra Przetwarzania Sygnałów i Inżynierii Multimedialnej; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Wydział Ekonomiczny. Katedra Studiów Regionalnych i Europejskich