Metal Nanoparticles - Their Use and Impact on Plants Growing in Laboratory Conditions
Ładowanie...
Data
2019
Tytuł czasopisma
ISSN czasopisma
Tytuł tomu
Wydawca
Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie
Abstrakt
There is an increasing interest in nanotechnology all around the world. Nanoparticles differ from the classic material from which they are made in that they change their physical and chemical properties below certain sizes. Thanks to these properties, they are used both in scientific research, medicine and industry, and in recent years also in agriculture. Depending on the type of metal and size of the particules, however, their impact on plant development varies.There are different reports concerning the impact of nanoparticles on the growth and development of plants. In this paper, we gather the knowledge acquired up to now on the interactions of specified nanoparticles – of gold, silver, copper and platinum with plants cultivated in laboratory conditions. The existing research does not allow us to determine unequivocally what impact nanometals have on the plants. The properties that make them unique may have both a negative and positive impact on plants. In a great deal of research, the impact of the nanoparticles on the decrease of the plants’ growth and formation of sorter shoots and roots was observed. A high concentration of nanoparticles was also decreasing the chlorophyll content, photosynthesis, transpiration and stomatal conductance rates. The contact of plants with nanoparticles was also manifesting itself by an increased oxidative stress, as a result of which in plant tissues, an over-production of reactive oxygen species damaging lipids of the cell membrane and the DNA was observed. A slower regeneration of plants and their dieback was frequently observed in the case of the addition of nanoparticles to nutrient mediums in the in vitro cultures. By carrying out a series of research with the use of nanoparticles, researchers concluded that their appropriate concentrations may be used in order to improve seed germination, increase growth and plant production as well as their protection and improvement of production of bioactive compounds.
Nanotechnologia cieszy się coraz większym zainteresowaniem naukowców na całym świecie. Nanocząsteczki różnią się od klasycznego materiału, z którego są wytwarzane, tym, że poniżej pewnych rozmiarów zmieniają właściwości fizyczne i chemiczne. Dzięki tym cechom są stosowane zarówno w badaniach naukowych, medycynie, jak i w przemyśle, a w ostatnich latach również w rolnictwie. W zależności od rodzaju metalu oraz wielkości cząsteczki ich wpływ na rozwój roślin jest jednak zróżnicowany. W niniejszej pracy zebrano dotychczas zdobytą wiedzę na temat interakcji nanocząsteczek złota, srebra, miedzi i platyny z roślinami uprawianymi w warunkach laboratoryjnych. Dotychczasowe badania nie potrafią jednoznacznie wskazać, jaki wpływ na rośliny wywierają nanometale. Właściwości, które sprawiają, że są one unikatowe, mogą oddziaływać na rośliny zarówno negatywnie, jak i pozytywnie. W wielu badaniach zaobserwowano wpływ nanocząsteczek na obniżenie wzrostu roślin oraz tworzenie się krótszych pędów i korzeni. Wysokie stężenia nanocząsteczek obniżają również zawartość chlorofilu, tempo fotosyntezy, transpiracji i przewodnictwa szparkowego. Kontakt roślin z nanocząsteczkami objawia się również zwiększonym stresem oksydacyjnym, w wyniku którego w tkankach roślinnych obserwowano nadprodukcję reaktywnych form tlenu uszkadzających lipidy błony komórkowej oraz DNA. W przypadku dodatku nanocząsteczek do podłoży hodowlanych w kulturach in vitro często obserwowano wolniejszą regenerację roślin i ich zamieranie. Przeprowadzając wiele badań z użyciem nanocząsteczek, naukowcy doszli do wniosku, że odpowiednie ich stężenia mogą być stosowane w celu poprawienia kiełkowania nasion, zwiększenia wzrostu i plonów roślin, a także ich ochrony i polepszenia produkcji bioaktywnych związków.
Nanotechnologia cieszy się coraz większym zainteresowaniem naukowców na całym świecie. Nanocząsteczki różnią się od klasycznego materiału, z którego są wytwarzane, tym, że poniżej pewnych rozmiarów zmieniają właściwości fizyczne i chemiczne. Dzięki tym cechom są stosowane zarówno w badaniach naukowych, medycynie, jak i w przemyśle, a w ostatnich latach również w rolnictwie. W zależności od rodzaju metalu oraz wielkości cząsteczki ich wpływ na rozwój roślin jest jednak zróżnicowany. W niniejszej pracy zebrano dotychczas zdobytą wiedzę na temat interakcji nanocząsteczek złota, srebra, miedzi i platyny z roślinami uprawianymi w warunkach laboratoryjnych. Dotychczasowe badania nie potrafią jednoznacznie wskazać, jaki wpływ na rośliny wywierają nanometale. Właściwości, które sprawiają, że są one unikatowe, mogą oddziaływać na rośliny zarówno negatywnie, jak i pozytywnie. W wielu badaniach zaobserwowano wpływ nanocząsteczek na obniżenie wzrostu roślin oraz tworzenie się krótszych pędów i korzeni. Wysokie stężenia nanocząsteczek obniżają również zawartość chlorofilu, tempo fotosyntezy, transpiracji i przewodnictwa szparkowego. Kontakt roślin z nanocząsteczkami objawia się również zwiększonym stresem oksydacyjnym, w wyniku którego w tkankach roślinnych obserwowano nadprodukcję reaktywnych form tlenu uszkadzających lipidy błony komórkowej oraz DNA. W przypadku dodatku nanocząsteczek do podłoży hodowlanych w kulturach in vitro często obserwowano wolniejszą regenerację roślin i ich zamieranie. Przeprowadzając wiele badań z użyciem nanocząsteczek, naukowcy doszli do wniosku, że odpowiednie ich stężenia mogą być stosowane w celu poprawienia kiełkowania nasion, zwiększenia wzrostu i plonów roślin, a także ich ochrony i polepszenia produkcji bioaktywnych związków.
Opis
Słowa kluczowe
nanotechnology, metal naoparticles, regeneration of plants, nanotechnologia, nanocząsteczki metali, regeneracja roślin
Cytowanie
Bednarek M., Mgłosiek O., Kulpa D. (2019). Metal Nanoparticles - Their Use and Impact on Plants Growing in Laboratory Conditions. Folia Pomer. Univ. Technol. Stettin., Agric., Aliment., Pisc., Zootech. 2019, 348(49)1, 5-20. doi: 10.21005/AAPZ2019.49.1.01