DFT Calculation of Carbon-Doped TiO2 Nanocomposites

dc.contributor.authorGustavsen, Kim Robert
dc.contributor.authorFeng, Tao
dc.contributor.authorHuang, Hao
dc.contributor.authorLi, Gang
dc.contributor.authorNarkiewicz, Urszula
dc.contributor.authorWang, Kaiying
dc.contributor.organizationDepartment of Microsystems, University of South-Eastern Norway, 3184 Horten, Norwayen
dc.contributor.organizationInstitute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Chinaen
dc.contributor.organizationDepartment of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecinen
dc.contributor.organizationZachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Nieorganicznej i Inżynierii Środowiskapl_PL
dc.date.accessioned2023-09-08T09:17:19Z
dc.date.available2023-09-08T09:17:19Z
dc.date.issued2023-09-07
dc.description.abstractTitanium dioxide (TiO2) has been proven to be an excellent material for mitigating the continuous impact of elevated carbon dioxide concentrations. Carbon doping has emerged as a promising strategy to enhance the CO2 reduction performance of TiO2 . In this study, we investigated the effects of carbon doping on TiO2 using density functional theory (DFT) calculations. Two carbon doping concentrations were considered (4% and 6%), denoted as TiO2 -2C and TiO2 -3C, respectively. The results showed that after carbon doping, the band gaps of TiO2 -2C and TiO2-3C were reduced to 1.58 eV and 1.47 eV, respectively, which is lower than the band gap of pure TiO2 (2.13 eV). This indicates an effective improvement in the electronic structure of TiO2. Barrier energy calculations revealed that compared to pure TiO2 (0.65 eV), TiO2 -2C (0.54 eV) and TiO2 -3C (0.59 eV) exhibited lower energy barriers, facilitating the transition to *COOH intermediates. These findings provide valuable insights into the electronic structure changes induced by carbon doping in TiO2, which can contribute to the development of sustainable energy and environmental conservation measures to address global climate challenges..en
dc.description.sponsorshipNarodowe Centrum Badań i Rozwojupl_PL
dc.identifier.citationGustavsen, K.R., et al. (2023). DFT Calculation of Carbon-Doped TiO2 Nanocomposites, Materials,16, 6117. doi 10.3390/ma16186117en
dc.identifier.doi10.3390/ma16186117
dc.identifier.projectNOR/POLNORCCS/ PhotoRed/0007/2019-00pl_PL
dc.identifier.urihttps://hdl.handle.net/20.500.12539/1841
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectTiO2en
dc.subjectcarbon dopingen
dc.subjectDFTen
dc.subjectDOSen
dc.subjectfree energyen
dc.subject.otherDyscyplina::Nauki inżynieryjno-techniczne::Inżynieria chemicznapl_PL
dc.titleDFT Calculation of Carbon-Doped TiO2 Nanocompositesen
dc.typeArticleen

Pliki

Oryginalne pliki
Teraz wyświetlane 1 - 1 z 1
Ładowanie...
Miniatura
Nazwa:
Kaiying_materials-16-06117.pdf
Rozmiar:
2.2 MB
Format:
Adobe Portable Document Format
Opis:
Main article
Licencja
Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
license.txt
Rozmiar:
1.13 KB
Format:
Item-specific license agreed upon to submission
Opis: