Artykuły naukowe (WEl)
Stały URI dla kolekcji
Przeglądaj
Przeglądaj Artykuły naukowe (WEl) wg Autor "Kozłowska, Agnieszka"
Teraz wyświetlane 1 - 4 z 4
Wyników na stronę
Opcje sortowania
Pozycja Open Access E-Beam Effects on Poly(Xylitol Dicarboxylate-co-diol Dicarboxylate) Elastomers Tailored by Adjusting Monomer Chain Length(MDPI, 2021-04-02) Piątek-Hnat, Marta; Bomba, Kuba; Kowalski-Stankiewicz, Janusz P.; Pęksiński, Jakub; Kozłowska, Agnieszka; Sośnicki, Jacek G.; Idzik, Tomasz J.; Schmidt, Beata; Kowalczyk, Krzysztof; Walo, Marta; Mikołajczak, Grzegorz; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; Pomeranian Medical University in Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; Institute of Nuclear Chemistry and Technology,Warszawa; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, SzczecinPoly(xylitol dicarboxylate-co-diol dicarboxylate) elastomers can by synthesized using wide variety of monomers with different chain lengths. Obtained materials are all biodegradable, thermally stable elastomers, but their specific properties like glass transition temperature, degradation susceptibility, and mechanical moduli can be tailored for a specific application. Therefore, we synthesized eight elastomers using a combination of two dicarboxylic acids, namely suberic and sebacic acid, and four different diols, namely ethanediol, 1,3-propanediol, 1,4-buanediol, and 1,5- pentanediol. Materials were further modified by e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested using tensile tests, gel fraction determination, 1H NMR, and 13C NMR. Thermal properties were tested by Differential Scanning Calorimetry (DSC), Dynamic Thermomechanical Analysis (DMTA) and Thermogravimetric Analysis (TGA). Degradation susceptibility to both enzymatic and hydrolytic degradation was also determined.Pozycja Open Access Influence of e-beam irradiation on the physicochemical properties of poly(polyol succinate-co-butylene succinate) ester elastomers(2020-07-17) Piątek-Hnat, Marta; Bomba, Kuba; Pęksiński, Jakub; Kozłowska, Agnieszka; Sośnicki, Jacek G.; Idzik, Tomasz J.; Piwowarska, Danuta; Janik, Jolanta; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, SzczecinThe purpose of this research was synthesis and electron beam modification of novel ester elastomers consisting of sugar alcohol–succinic acid block and butylene glycol–succinic acid block. Four di erent alditols were used in the synthesis—sorbitol, erythritol, xylitol, and glycerol. The materials were irradiated with doses of 50, 100, and 150 kGy in order to determine which dose is the most beneficial. As expected, irradiation of the materials has led to the cross-link density becoming higher and improvement of the mechanical properties. Additionally, the materials were also sterilized in the process. The great advantage of elastomers described in the paper is the fact that they do not need chemical cross-linking agents or sensitizers in order to undergo radiation modification. The following tests were performed on cross-linked poly(polyol succinate-co-butylene succinate) elastomers: quasi-static tensile test, determination of cross-link density, di erential scanning calorimetry (DSC), dynamic thermomechanical analysis (DMTA), wettability (water contact angle), and Fourier transform infrared spectroscopy (FTIR). In order to confirm successful synthesis, prepolymers were analyzed by nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR).Pozycja Open Access Physical Effects of Radiation Modification of Biodegradable Xylitol-Based Materials Synthesized Using a Combination of Different Monomers(MDPI, 2021-03-26) Piątek-Hnat, Marta; Bomba, Kuba; Kowalski-Stankiewicz, Janusz P.; Pęksiński, Jakub; Kozłowska, Agnieszka; Sośnicki, Jacek G.; Idzik, Tomasz J.; Schmidt, Beata; Kowalczyk, Krzysztof; Walo, Marta; Kochmańska, Agnieszka; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; Pomeranian Medical University in Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; Institute of Nuclear Chemistry and Technology,Warszawa; West Pomeranian University of Technology, SzczecinThere is a possibility of obtaining xylitol-based elastomers sharing common characteristics of biodegradability, thermal stability, and elastomeric behavior by using monomers with different chain-lengths. Therefore, we have synthesized eight elastomers using a combination of four different diols (ethanediol, 1.3-propanediol, 1.4-buanediol, and 1.5-pentanediol) and two different dicarboxylic acids (succinic acid and adipic acid). The obtained materials were further modified by performing e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested by DSC, DMTA, TGA, tensile tests, gel fraction determination, hydrolytic and enzymatic degradation tests, 1H NMR and 13C NMR and FTIR.Pozycja Open Access Tailoring the Physico-chemical Properties of Poly(xylitol-dicarboxylate-co-butylene dicarboxylate) Polyesters by Adjusting the Cross-Linking Time(MDPI, 2020-07-03) Piątek-Hnat, Marta; Sładkiewicz, Paulina; Bomba, Kuba; Pęksiński, Jakub; Kozłowska, Agnieszka; Sośnicki, Jacek G.; Idzik, Tomasz J.; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, Szczecin; West Pomeranian University of Technology, SzczecinDetermining the cross-linking time resulting in the best achievable properties in elastomers is a very important factor when considering their mass production. In this paper, five biodegradable polymers were synthesized—poly(xylitol-dicarboxylate-co-butylene dicarboxylate) polymers, based on xylitol obtained from renewable sources. Five di erent dicarboxylic acids with even numbers of carbon atoms in the aliphatic chain were used: succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid. Samples were taken directly after polycondensation (prepolymer samples) and at di erent stages of the cross-linking process. Physiochemical properties were determined by a gel fraction test, di erential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), quasi-static tensile tests, nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR), and an in vitro biodegradation test. The best cross-linking time was determined to be 288h. Properties and degradation time can be tailored for specific applications by adjusting the dicarboxylic acid chain length.