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Abstract.  The paper develops a mathematical framework which helps to analyse a class of 
non-linear, uncertain, discrete-time systems defined on finite horizon control. Uncertainty 
in the system is modelled by unknown (norm bounded) additive perturbations of the system 
matrices. The main purpose of the paper is to derive estimates for output deviations system 
from the output of the nominal (unperturbed) one. These estimates use norms of certain dy-
namical operators defined on a finite time interval. 
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1. INTRODUCTION 
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Control systems very often are uncertain, non-linear 
and/or time-varying. The most general models for 
such systems are given in state space. Synthesis of 
robust control require to know at least estimates of 
maximal differences between output signals among 
different conditions and uncertainties. Main purpose 
of this paper is to derive estimates and create tools 
for analysis for the most general case of state space 
model, with non-linear and time-varying coefficients. 
Troughout the paper it is assumed, that a positive 
integer N and a nominal control 

{ }{ }( ) ,  0, ..., 1m

p k k N∈ ∈ −u R  which has feedback 
form. The corresponding nominal state and nominal 
output functions of Σ are denoted by px  and py . If 
the control is applied to the uncertain system then, in 
general y∆≠yp. In particular the paper develops tech-
niques for estimating the differences 

,  p p∆ ∆− −y y x x  for a class of non-linear 
discrete-time systems on a finite time horizon.  

Elements of the space are sequences of vectors 
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where z , qi) R∈( { }0, ..., 1i N∈ −  

Scalar product in the space is defined as follows 
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where z v , , q∈ R { }0, ..., 1i N∈ − . 

The induced norm has the form 
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where q∈z , R { }0, ..., 1i N∈ − . 

Space of matrix’s sequences are given by Hilbert 
space. 2. METRIC SPACE 

Space of vector’s sequence are given by Hilbert 
space (l2). 
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For the sake of simplicity it can be introduced three 
operators , 

 and , de-
fined as follows 

(( ) , ( ) )n N n N∈FL R RL

( , ( ) )n n N∈FN R RL(( ) , )n N n∈FK R RL

Elements of the space are sequences of matrices 

T)]1()...0([ −= NZZZ    (6) 

where ( ( , )p qi) ∈Z R RL , { }0, ..., 1∈ −i N  

The most often used norms for vector spaces can be 
found e.g. in (Stewart, Sun 1990). 

Generalised operator p-norm can be written as 
follows  
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where h is sequence from input opearator space. 

3. NOMINAL MODEL 1
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The nominal, unperturbed, non-linear, control system 
is either 

where k=2,3,...,N.  
0( 1) ( ( ), ( ),p p pk k+ =x f x u )k k

)p k

p k

,  xp(0)=x0,    (8) 
Theorem 1. For every system Σp described by equa-
tions (9-10) the state and output trajectory can be 
written as follows or 
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( ) ( ( ), ) ( )p pk k k= ⋅y C x x ,                   (18) 
( ) ( ( ), ) ( )p pk k k= ⋅y C x x   k∈N,     (10) 

Proof:  

where { }{ }( ) ,  0, ..., 1n

p k k N∈ ∈ −x R

{
 is nominal 

state, }{ }( ) ,  0, ..., 1m

p k k N∈ ∈ −u R  is nominal 

control, { }{ }( ) ,  0, ..., 1p

p k k N∈ ∈ −y R

( ( ), ) n n
p k k ×∈A x R ( (p

 is nominal 

output, and { , ), ) n mk k ×∈ RB u

), )

, 

( ( p nk k ×∈R {pC x  where }0, ...,k ∈ 1N − } are 
known matrices’ functions. Function f0 is non-linear. 

Let be , 

,  and 

, y y , . 
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Then for k=2 state equations (17-18) and (9-10) are 
equal to 
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In order to cover the most general situation one can 
assume that control has the following feedback form Substituting (17-18) in (9-10) for k+1 it is 
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where { ,  and  
k=0,1,...,N-1}. 
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What finish the proof. 
Substituting (11) into state equations (9-10) gives  
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4. PERTURBED MODEL 

Real control system is different from (8) or (9-10) 
and may be described by perturbed models Σ∆. For 
the first case (8) the model is given following )()),(()( kkkk ppp xxCy ⋅= ,                 

xp(0)=x0,      k=0,1,...,N-1,      (13) 
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where: 
where ∆C(xp(k),k) ( ),p nR RL∈ , 

∆'Cr(xp(k),k) ( , )p nR RL∈ , k=0,1,...,N-1, and f0(xp(k),up(k),k)∈ , ∆( nRL

L

L

f0(xp(k),up(k),k)∈ , 

∆'

( )nRL

frx(xp(k),up(k),k)∈ , 

∆'

( ),n nR R

( ,n mR Rfru(xp(k),up(k),k)∈ , k=0,1,...,N-1, and 
the three conditions have to be satisfied 

||∆C(xp(k),k)|| ≤ ∞<Cδ ,           (33) 

||∆'Cr(xp(k),k)|| Crδ≤ < ∞

k

,            (34) 

||∆f0(xp(⋅),up(⋅),⋅)|| 0fδ≤ < ∞ ,     (21) To obtain the norm of maximal output deviation, one 
needn’t to know the uncertainty matrices ∆A, ∆B, ∆C, 
∆'Ar, ∆'Br, ∆'Cr , One has to known only the estimates 
δA, δB, δC, δAr, δBr, δCr. ||∆'frx(xp(⋅),up(⋅),⋅)|| frxδ≤ < ∞ ,     (22) 

||∆'fru(xp(⋅),up(⋅),⋅)|| fruδ≤ < ∞

k∆

k

)
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Theorem 2. For every perturbed system Σ∆ described 
by equations (24-25) the state and output trajectory 
can be written as follows 

For the second nominal model, described by (9-10), 
one can write following uncertain description 
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where ∆A(xp(k),k)∈ , 
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Proof: 

Above equations can be proofed using mathematical 
induction and substitution identical as in the proof of 
theorem 1.  

||∆A(xp(k),k)|| Aδ≤ < ∞ ,    (27) 

||∆'Ar(xp(k),k)|| ∞<≤ Arδ ,    (28) For k=2 state equations (35-36) and (24-25) with 
feedback control (11) are equal to 
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||∆B(up(k),k)|| ≤ ∞<Bδ ,           (30) Substituting (35-36) in (24-25) for k+1 it is 
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Proof: It is a standard result of functional analysis, if 
(35) will be transformed with triangle inequality and 
(26-33) are satisfied, there is 
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5. TRAJECTORY DEVIATION NORM 
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By substituting (44) into (43) one has the state trajec-
tory estimate. 

are satisfied, the distances 
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After simplifying (45), and when equations (37) and 
(26-34) are satisfied the norm of uncertain state’s de-
viation can be written as follows 
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What is equivalent to equation (39).           � 

What finish the proof.               � 
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Emirsajłow, Z. (1997). Control problems on a finite 
time horizon and uncertain systems. Proceed-
ings of the 4th European Control Conference. 
Brussels. 

Kaczorek, T. (1998). Vectors and matrices in auto-
matics and electrical engineering. WNT, War-
saw (in Polish). 

Ogata, K. (1995). Discrete-Time Control Systems. 
Prentice Hall, Englewood Cliff, New Jersey. 
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Orłowski P., Emirsajłow Z. (1999). Analysis of finite 
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crete-time system, Proc.s of the 9th Nat. 
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Orłowski, P. Selected Problems of Uncertainty Esti-
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Archiwum konferencji PTETiS vol. 9, str. 195-
199. After normalization and using triangle inequality it is 
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Stewart, G.W., Sun, J. (1990). Matrix Perturbation 
Theory. Academic Press, Inc., London. 

 

What finish the proof of theorem 5.             � 

6. CONCLUSION 

It follows from the above formulas that effectivness 
of the estimate (38) will highly depend on how good 
are the estimates of the operator norms ||C⋅LF||, ||LF|| 
etc.  

Determining estimates for the general non-linear 
model (8) is very hard, because it is required to com-
pute space estimates of (21-23). For the system with 
non-linear coefficients (9-10) it is easier, because the 
significant role play the method for determining 
norms of operators. The developed estimates can be 
used in various control tasks for both non-linear and 
time-varying uncertain discrete-time control systems.  
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