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Abstract: The main aim of this paper is to compare 

and evaluate frequency methods applicable for 

discrete-time (DT) linear time-varying (LTV) 

systems, in particular: two-dimensional (time, 

frequency) transfer function (2D-TF), time-

averaged 2D-TF and approximated Bode diagrams 

calculated using SVD-DFT approach and power 

spectral density (PSD) properties. The main 

evaluation criteria is possible applicability to 

feedback system stability analysis. The paper 

begins from short theoretical background of 

frequency methods applicable for LTV systems. 

Further properties of these methods are compared 

and discussed on the basis of particular case of 

parameter controlled switching DT LTV system.  

Key-Words: - discrete-time systems, time-varying 

systems, non-stationary systems, stability analysis, 

finite time horizon, frequency analysis  

1. INTRODUCTION 

Properties of linear time-invariant (LTI) systems are 

unequivocally connected with eigenvalues of the 

system matrix, however for the linear time-varying 

(LTV) systems analysis have to be much more 

complex. Although many papers were recently 

published for slowly varying LTV systems, there was 

less attention for fast switching LTV systems. The 

notion of hazard is well known in the theory of logical 

circuits as instability or abnormality of the system 

connected to transition state and variable response 

time. Similar effects may occur also for dynamical 

systems (continuous and discrete) when the changes of 

parameters are sufficiently large and often. 

Frequency methods are one of the most important 

tools for LTI systems analysis. Well-developed 

concepts and analytic methods for such systems 

cannot be in simple manner applied to LTV systems. 

Nevertheless until now there are only a few papers in 

these area [1], [2] published recently. LTV frequency 

system analysis focuses on following directions: two 

dimensional transfer function (2D-TF) introduced by 

Zadeh [3] and extended by followers, averaged 

transfer function (ATF) which can be obtained by 

time-averaging of 2D-TF [4], pseudo modal 

parameters analysis (PMP), which extends the concept 

of modal parameters for LTI systems to the time-

varying case [5]. Constant eigenvalues are substituted 

by their time-varying equivalents. Third approach 

proposed [6] and analysed [7], [8], [4] by the author, 

called SVD-DFT approximated Bode diagrams, is 

generalization of frequency domain description for 

LTV system, compatible to classical Bode diagrams 

for LTI systems, which preserve feedback stability 

properties for LTV systems [7], [8]. 

Main aim of this paper is to compare 3 known 

methods for time-frequency domain analysis for linear 

time-varying, discrete-time systems. Particularly we 

try to show main strengths and weaknesses, with 

special emphasis placed on the 2D transfer function 

and SVD-DFT approach. Most of the properties are 

analysed on the basis on feedback stability for given 

discrete-time switching system with invariant 

eigenvalues. Superiority of the proposed SVD-DFT 

approach in respect to alternative existing methods, 

e.g. 2D-transfer function (3D Bode diagrams) and 

ATF are shown on numerical examples in section 4.  

2. MODEL DESCRIPTION 

Dynamic, discrete-time system can be given by set of 

difference equations, called the state space model 

( ) ( ) ( ) ( ) ( )1p p pk k k k k+ = +x A x B v ,            (1) 

( ) ( ) ( ) ( ) ( )p p pk k k k k= +y C x D v ,           (2) 

where ( ) n

p k ∈x R  is the state, ( ) m

p k ∈v R  is control, 

( ) p

p k ∈y R  is output, initial conditions are equal to 

zero xp(0)=0, ( ) n nk ×∈A R , ( ) n mk ×∈B R , 

( ) p nk ×∈C R , ( ) p mk ×∈D R  are system matrices and 

the time horizon is finite 1,2,...,k N= . 

The system (1-2) can be given alternatively e.g. using 

following matrix operator’s notation:  

( )ˆˆ ˆ ˆ ˆˆ ˆ ˆ= = +y Tv CLB D v        (3) 

where signals operators input v̂ , state x̂  and output ŷ  

are written using column block vector form, e.g. signal 

x̂  can be written in following way: 

( ) ( ) ( ) T
ˆ 0 , 1 ,..., 1p p p N= −  x x x x    (4) 
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System operators have following form 
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Operator D̂  can be written using block diagonal form 

similar to operators ˆˆ  and B C . The input-output 

operator T̂  is bounded operator from l2 into l2 and can 

be alternatively written in terms of set of impulse 

responses of a time-varying system taken at different 

times. For SISO system it takes the following form: 

( )
( ) ( )

( ) ( ) ( )

0,0

1, 0 1,1

1,0 1,1 1, 1

0 0

0
ˆ

N N N N

h

h h

h h h− − − −

 
 
 =
 
 
  

T

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

  (7) 

where h(k1,k0) is system response to Kronecker delta 

( )0k kδ −  at time k1. 

3. LTV SYSTEMS TRANSFORMATIONS 

 2D Transfer Function (2D-TF) 

One of the first attempts for analysis LTV systems in 

the frequency domain has been made by Zadeh [3] and 

developed by followers e.g. [9]. The time-varying 

transfer function has been defined by extending the 

Laplace transform to the varying impulsive response.  

The most general realization for continuous time 

systems is following generalized Weyl-symbol. 
( ) ( ) ( ) ( )( ) 21 1

2 2
, , j fL t f h t t e d

α π τα τ α τ τ−= + − − +∫  (8) 

where α ∈R  is arbitrary real number, usually 

0.5α ≤  and ( )1 0,h t t  is impulse response of the 

system taken at time t1 for Dirac impulse shifted by t0. 

In general above transformation does not satisfy some 

properties which hold for time invariant systems. For 

example multiplication in the frequency domain does 

not correspond to the convolution in the time domain. 

Equation (8) cannot be applied directly to discrete 

time systems, following equation can be used instead: 
( ) ( )

( )( ) ( )( )( ) ( )( )2 1 1 /1 1
2 2

1

,

,

l k

N
j k n N

p p

n

K f

l n T l n T e

α

π

τ

η α α − − −

=

=

+ − − +∑
    (9) 

where 
( )1

,  , 1,2, , , 1,2, ,
2

l p k

p

k N
lT f l N k

NT
τ

−
= = = =… …  

Assuming that α=-0.5 (frequency dependent 

modulation), the time-frequency transfer function can 

be written in following form: 

( ) ( ) ( ) ( )( )0.5 2 1 1 /

1

, ,
N

j k n N

l k l l

n

K f h n e
πτ τ τ− − − −

=

= +∑  (10) 

where h(k1,k0) is response to Kronecker delta 

( )0k kδ −  at time k1. 

For systems defined on finite time horizon 

{ }0,..., 1k N∈ − , the 2D-TF can be calculated from 

system input output operator in upper triangle form. 

The form is similar to the operator T̂  with the 

difference that T̂  has lower triangular form. 
( ) ( )

( ) ( ) ( )
( ) ( )

( )

0.5

,

0, 0 1,1 1, 1

1,0 2,1

1, 0

, { =DFT ,

0
}

0 0

l k k l

N N

N

K f

h h h

h h

h

τ κ−

− −

−

 = ∈  

 
 
 =
 
 
  

K T

T

⌣

⋯

⌣ ⋯

⋮ ⋮ ⋰ ⋮

⋯

  (11) 

where { },k lκ  is element from kth row and lth column of 

matrix K. 

 Averaged Transfer Function (ATF) 

It is difficult to analyse properties of the LTV system 

using 2D-TF. One dimensional approximation of 2D-

TF can be obtained by averaging complex transform 
( ) ( , )l kK f
α τ  in respect to time [4]. Numerically it can 

be written as following mean: 

( ) ( ) ( )( )

1

1
,

N

A k l k

l

G j K f
N

αα ω τ
=

= ∑      (12) 

where l and m are arbitrary integers in a given range 

{ }, 1,2, ,l m N∈ … . If α is unspecified it is assumed 

that α=-0.5 and ( ) ( )( 0.5) ,  2A k A k k kG j G j fω ω ω π−= = . 

The definition of ATF for LTV system relies upon the 

assumption that every sample has the same importance 

and thus can be averaged with equal weights. The 

ATF can be divided into the magnitude and the phase 

plot, where the magnitude ( )( )

A kG jα ω  can be 

interpreted as the selective amplification of the first 

harmonic in the output spectra for a given sinusoidal 

input. All the other components which exist only for 

time-varying systems are neglected. 

 SVD-DFT Transformation 

The method is based on Singular Value 

Decomposition of the system operator. This spectral 

decomposition is a generalization for SVD of a matrix. 

For discrete-time systems and finite time horizon the 

operator is finite dimensional. 
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The relation between input and output power spe

density and the amplitude diagram is described
2

( ) ( ) ( )k k kω ω ω=y vS G S

where following property can be proved 

1 1

1
( ) ( ) DFT [ ]

N N

k j k k j

j j

S
N

ω ω
= =

= = =∑ ∑vS v 1

for ( )/ 2k pk T Nω = ⋅ ⋅  and sampling period

( ) ( )k kω ω= yG S

and after substituting  

k

1

1
( ) DFT [ ]

N

k j j

jN
ω σ

=

= ∑yS u

where σi is i
th
 singular value of 

decomposition. 

Finally magnitude diagram can be computed from

( ) 2

1

1
DFT [ ]

N

k j j

jN
ω σ

=

= ∑G u

and phase diagram, can be approximated by 

( )
1

DFT [ ]
arg

DFT [ ]

N

k j

j

ϕ ω σ
=

 
=   

 
∑

Information included in SVD-DFT diagrams cannot be 

extracted for specific time samples. 

DFT methods applied to LTI systems give

almost identically as like the classical Bode

(under sufficiently large time horizon

show that SVD-DFT method is more efficient tool for 

stability evaluation for feedback LTV system than 

ATF and 2D-TF methods. 

4. ANALYSIS OF CONSTANT EIGENVALUES 

LTV SYSTEM

The system under consideration is discrete

system with constant eigenvalues located inside the 

unity circle on the complex plane.  

In spite of the fact that eigenvalues of the system 

matrix A(k) are inside the unity circle

plane, the stability of the system depends on 

switching of the system. The parameter that 

determines the switching interval is 

relations unequivocally define the model (

( )k κ=A A , [ ]T( ) 1 0k =B , [( ) 0 1k =C

where 

0 1 2

3

2 1.2 1 2 1 1.2
, , ,

2 1 1.2 2 2 2

2 2
,  =floor rem ,4

1.2 1

k
κ

ε

− − −     
= = =     − − − −     

−    =    −    

A A A

A

Variable κ denotes round towards minus infinity of the 

remainder of k/ε after division by 4. The sampling 

period is equal to Tp=0.04. The eigenvalues of matrix 
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The relation between input and output power spectral 

amplitude diagram is described by: 

( ) ( ) ( )k k kω ω ωy vS G S      (13) 

where following property can be proved [6], [7], [8]:  

2

( ) ( ) DFT [ ]k j k k j= = =S v 1      (14) 

sampling period Tp, then 

( ) ( )k kω ωG S             (15) 

2

( ) DFT [ ]k j jω σS u            (16) 

singular value of T ˆ=USV T  SVD 

magnitude diagram can be computed from 

2

kDFT [ ]k j jG u         (17) 

hase diagram, can be approximated by  

k

k

DFT [ ]

DFT [ ]

j

j

 
  
 

u

v
       (18) 

diagrams cannot be 

extracted for specific time samples. ATF and SVD-

ystems give diagrams 

tically as like the classical Bode diagrams, 

under sufficiently large time horizon). Further we 

DFT method is more efficient tool for 

stability evaluation for feedback LTV system than 

T EIGENVALUES 

SYSTEM 

is discrete-time LTV 

with constant eigenvalues located inside the 

In spite of the fact that eigenvalues of the system 

) are inside the unity circle on the complex 

plane, the stability of the system depends on the 

the system. The parameter that 

interval is κ. The following 
define the model (1-2)  

]( ) 0 1 , ( ) 0k =D  (19) 

0 1 2

2 1.2 1 2 1 1.2
, , ,

2 1 1.2 2 2 2

,  =floor rem ,4
k

− − −     
= = =     − − − −     

  
  

  

A A A

(20) 

wards minus infinity of the 

vision by 4. The sampling 

=0.04. The eigenvalues of matrix 

A(k) are independent of p
*

1 2( ) ( ) 0.5 0.3873ik kλ λ= = +

eigenvalues ( ) expi i p i pk k T j k Tλ δ ω = − + 

system correspond to damping factor 

natural frequency ( )i kω
the values in respect to 

properties of the system do not depend on 

the system has only one resonant fr

rad/s=2.6 Hz. Examples considered here show that 

might be approximately 

varying systems but it is not true 

Fig. 4.1. 3D Bode diagrams determined for constant 

eigenvalues system (19-20

N=150. 

To see how the parameter 

system, the analysis will be carried out for 4 following 

values of parameter ε= 2.5, 2.93, 3 and 20. 

Fig. 4.2. Bode diagrams determined for discrete 

constant eigenvalues system (

ε=2.5 and N=500. 
When the parameter ε takes the value 
becomes unstable. The 2D

divided into magnitude and phase pl

Fig. 4.1. Fig. 4.2 shows a

obtained using SVD-DFT method

levels on amplitude diagrams on Fig. 

negative stability of the sy
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) are independent of parameter ε and equal 
( ) ( ) 0.5 0.3873i  for all k. Complex 

( ) ( )( ) expi i p i pk k T j k Tλ δ ω = − +   of the 

damping factor ( ) 11.5i kδ ≅  and 

) 16.5k ≅ ± . The invariance of 

the values in respect to k wrongly suggests that 

properties of the system do not depend on ε and also 
resonant frequency about 16.5 

rad/s=2.6 Hz. Examples considered here show that it 

approximately true only for slowly time-

not true in general. 

 
3D Bode diagrams determined for constant 

20) with parameters ε=2.5 and 

To see how the parameter ε effects the stability of the 
e analysis will be carried out for 4 following 

2.5, 2.93, 3 and 20.  

 
. Bode diagrams determined for discrete 

system (19-20) with parameters 

takes the value ε=2.5 the system 

The 2D-TF defined by eq. (10) 

divided into magnitude and phase plot is depicted on 

shows approximated Bode diagrams 

DFT method. High amplification 

amplitude diagrams on Fig. 4.2 acknowledge 

negative stability of the system. When the system is 

6 8 10 12 14

6 8 10 12 14

F re q u e n c y  (H z )
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unstable the magnification level in the ampl

diagram strongly depends on the length of 

horizon, taking high values e.g. 335 dB for 

N=500 (see Fig. 4.2) and e.g. 854 dB for 

N=200. For stable systems diagrams calculated for 

different N values converges with 

N≥100 is sufficient for most systems

N corresponds to lower resolution in frequency 

domain. The shape of both 2D (Fig. 

4.1) diagrams are similar, although the values are 

different, due to differences in the 

horizon, which results in differences in the magnitude 

diagram for unstable systems. 

Fig. 4.3. Bode diagrams determined for discrete 

constant eigenvalues system (19-20

ε=2.93 and N=500. 

Fig. 4.4. 3D Bode diagrams determined for discrete 

constant eigenvalues system (19-20

ε=2.93 and N=150. 
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unstable the magnification level in the amplitude 

length of the time 

values e.g. 335 dB for ε=2.5, 
) and e.g. 854 dB for ε=1 and 

=200. For stable systems diagrams calculated for 

s with N→∞. In practise 
for most systems, although smaller 

solution in frequency 

2D (Fig. 4.2) and 3D (Fig. 

grams are similar, although the values are 

the length of the time 

esults in differences in the magnitude 

 
Bode diagrams determined for discrete 

20) with parameters 

 
. 3D Bode diagrams determined for discrete 

20) with parameters 

 

Fig. 4.5. Impulse response for system (

parameters ε=2.93, N=500, (open control loop).
For ε=2.93 the system is nearly at the boundary of 

stability. The amplification level on 

diagrams depicted in Fig. 

for smaller ε e.g. ε=2.5. Furthermore 

Fig. 4.3 decrease in contrast to Fig. 

unstable system, the phase increases. 

Fig. 4.6. Bode diagrams dete

20) with parameters ε=3 and 
Moreover the surfaces depicted in Fig. 

boundary character of the s

discontinuous and the phase surfaces have no 

determinate direction for all time samples.

Confirmation of stability/instability of the sy

the time-domain may be i

in Fig. 4.5. 

Fig. 4.7. 3D Bode diagrams determined for di

constant eigenvalues system (

ε=3 and N=150. 
The next parameter value for which the system is 

analyzed is ε=3. Approximated Bode diagrams for 

such values are depicted in Fig. 

decreases, which is the first symptom of stability. 
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. Impulse response for system (19-20) with 

=500, (open control loop). 

2.93 the system is nearly at the boundary of 

bility. The amplification level on the Bode 

picted in Fig. 4.3 is much more lower then 

Furthermore the phase plot in 

.3 decrease in contrast to Fig. 4.2 where for 

tem, the phase increases.  

 
Bode diagrams determined for system (19-

=3 and N=500. 

surfaces depicted in Fig. 4.4 confirm the 

ary character of the system, as they are 

tinuous and the phase surfaces have no 

tion for all time samples. 

Confirmation of stability/instability of the system in 

domain may be impulse response plotted as 

 
. 3D Bode diagrams determined for discrete 

constant eigenvalues system (19-20) with parameters 

he next parameter value for which the system is 

=3. Approximated Bode diagrams for 

ch values are depicted in Fig. 4.6. The phase plot 

decreases, which is the first symptom of stability. 
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Frequency (Hz)
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Similar observations can be done on 3

depicted in Fig. 4.7. Here, the phase is again decreased 

and the magnitude is in the same range despite 

different values for N (500 and 150 steps, 

respectively).  

Fig. 4.8. Impulse responses for discrete constant 

eigenvalues system (19-20) with parameters 

N=250, feedback loop and proportional contro

k=0.1531 (-16.3dB). 

Fig. 4.9. Bode diagrams determined for di

constant eigenvalues system (19-20

ε=20 and N=500. 
The system without feedback is stable. Thus, it may be 

possible to find the lowest 

proportional controller for feedback

that causes instability. Such amplification, found 

experimentally is equal to _crit dBk

value is greater then corresponding am

out from Fig. 4.6 for the phase shift equal to 180 deg 

( )0dBm G f− = − = = -43 dB. Fig. 

impulse responses for a closed control loop system for 

amplification converted to linear scale 

similar gains to kcrit (differences are equal to 

1% and 2%± ±  on a linear scale). 

For ε=20 the system without feedback 

Confirmation of this stability are Bode diagrams as 

depicted on Fig. 4.9, 4.10, 4.11.  

Similar to previous examples one can find 

gain for feedback control loop. Such ampli

found experimentally is equal to crit dBk
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e done on 3D surfaces as 

. Here, the phase is again decreased 

and the magnitude is in the same range despite 

(500 and 150 steps, 

 
. Impulse responses for discrete constant 

) with parameters ε=3, 
=250, feedback loop and proportional controller 

 
. Bode diagrams determined for discrete 

20) with parameters 

is stable. Thus, it may be 

lowest amplification of 

for feedback control system 

. Such amplification, found 

_ 16.3 dBcrit dB = − . The 

value is greater then corresponding amplification read 

phase shift equal to 180 deg 

43 dB. Fig. 4.8 shows five 

r a closed control loop system for 

amplification converted to linear scale kcrit=0.153 and 

(differences are equal to 

without feedback is also stable. 

this stability are Bode diagrams as 

Similar to previous examples one can find the critical 

loop. Such amplification 

_ 10.93 dBcrit dBk = − . 

The value is greater than corresponding amplification 

( )1.82m G f− = − = = -14.7 

dB for phase shifts equal to 

noted that the difference is less than in the example 

with ε=3. A two-dimensional transfer

depicted in Fig. 4.10, although it is much more 

difficult to estimate the critical gain using t

Fig. 4.10. 3D Bode diagrams determined for di

constant eigenvalues system (

ε=20 and N=150. 
Fig. 4.11 gives information regarding linear time 

averaging of 2D-TF. The amplification level is quite 

different than that depicted on Figs. 

Fig. 4.11. Averaged 3D Bode diagrams complex on 

time domain for discrete constant e

(19-20) with parameters ε
Now we compare these diagrams with real 

amplification for sinusoidal input

The input is sinusoidal with unitary amplitude and 5 

different values of phase shift (0, 36, 72, 108, 144 

deg). Magnification is calculated as outpu

of respective input frequency

omitted. Result of such co

4.12. The thin dotted line shows real sin

magnifications, the thick continuous line is the 

averaged magnitude copied from Fig. 

seen that averaged Bode diagrams from Fig. 

good approximation of selective amplification for the 

sinusoidal component. It has also been shown that 

from the stability analysis point o
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dB for phase shifts equal to 180±  deg. It should be 

noted that the difference is less than in the example 

dimensional transfer function is 

, although it is much more 

timate the critical gain using this plot. 

 
. 3D Bode diagrams determined for discrete 

constant eigenvalues system (19-20) with parameters 

information regarding linear time 

. The amplification level is quite 

that depicted on Figs. 4.9 and 4.10.  

 
. Averaged 3D Bode diagrams complex on 

domain for discrete constant eigenvalues system 

ε=20, N=150. 
these diagrams with real 

sinusoidal input in following way. 

The input is sinusoidal with unitary amplitude and 5 

different values of phase shift (0, 36, 72, 108, 144 

deg). Magnification is calculated as output amplitude 

of respective input frequency, other components are 

of such comparison is depicted in Fig. 

. The thin dotted line shows real sin->sin 

magnifications, the thick continuous line is the 

nitude copied from Fig. 4.11. It can be 

diagrams from Fig. 4.11 are a 

good approximation of selective amplification for the 

sinusoidal component. It has also been shown that 

from the stability analysis point of view the SVD-DFT 
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diagrams better approximate behaviour of LTV 

systems. 

 
Fig. 4.12. Real magnifications of sinusoidal inputs for 

5 different phase shifts for discrete constant 

eigenvalue system (19-20) with parameters ε=20, 
N=150. 

Three impulse responses for closed control loop 

system (ε=20) are shown in Fig. 13. Amplification –

10.93 dB is converted to linear scale where kcrit=0.284 

and gains are similar to kcrit (differences are equal to 

5% ±  on a linear scale). 

 
Fig. 4.13. Impulse responses for discrete constant 

eigenvalues system (19-20) with parameters ε=20, 
N=500, feedback loop and proportional controller 

(gain –10.93 dB). 

5. CONCLUSION 

Comparison of the three frequency domain methods 

for DT-LTV systems investigate and explore the most 

significant properties of each method as follows: 

A. Using the 2-D transfer function one can explore the 

largest possible amount of information about the 

system. It can be read from any of the 3-D plot (figs. 

4.1, 4.4, 4.7, 4.10) not only relation of magnitude and 

frequency, but also the period and the character of the 

system parameters variations. The main disadvantage 

of the method is the difficulty with analysing large 

amount of information, especially 3D plots, for which 

is also required higher computational power. 

B. Analysed example shows that, modal parameters 

cannot be successfully applied for analysed system. 

Calculated parameters are constant and independent 

on the system properties controlled by parameter ε. 
Such results may be useful only for slow-varying 

systems, e.g. for large values of ε. Computed value of 

eigen-frequency may be in some sense representative 

only for the last case ε=20, where the corresponding 
maximum (f≈2.6 Hz) is also visible on Bode 2D 
diagrams fig. 4.9 and 3D surfaces fig. 4.10. 

C. The method based on SVD-DFT is one-

dimensional simplification of the LTV system. 

Creating and analysis of results on 2D plots is much 

more easier then on 3D surfaces. It is useful for 

simplified analysis of LTV systems. The stability 

results are more adequate for the SVD-DFT 

approximation however linear time-averaging of 2D 

transfer function (fig. 4.11) is closer to real sinusoidal 

magnification. Also it should be mentioned that the 

SVD-DFT method is in general only homogeneous 

because the computational algorithm (17-18) take 

advantage of power spectral density properties (13) 

and compute quadratic mean. On the other hand 2D-

TF is linear (homogenous and additive) as well as 

ATF.  

REFERENCES 

[1] P. Gurfil (2003). Quantitative Lp Stability 
Analysis of a Class of Linear Time-Varying 

Feedback Systems. Int. J. Appl. Math. Comput. 

Sci., Vol. 13, No. 2, 179–184. 

[2] S Songschon, W Richard (2003). Comparison of 

the stability boundary and the frequency response 

stability condition in learning and repetitive 

control, Int. J. Appl. Math. Comput. Sci., vol. 13, 

no. 2, 169–177 

[3] Zadeh, L. A. (1950). Frequency analysis of 
variable networks. Proceedings of the Institute of 

Radio Engineers. 38, 291-299. 

[4] P. Orłowski (2007). Frequency Domain Analysis 

of Uncertain Time-Varying Discrete-Time 

Systems. Circuits, Systems and Signal Processing. 

[5] Liu, K. (1999). Extension of modal analysis to 

linear time-varying systems. Journal of Sound and 

Vibration 226, 149-167. 

[6] Orlowski, P. (2004). Selected problems of 

frequency analysis for time-varying discrete-time 

systems using singular value decomposition and 

discrete Fourier transform. Journal of Sound and 

Vibration. Vol. 278, pp. 903-921. 

[7] P. Orłowski (2007), An extension of Nyquist 
feedback stability for linear time-varying, 

discrete-time systems. Int. J. Factory Autom., 

Robotics and Soft Comp., Issue 2, pp. 51-56. 

[8] P. Orłowski, An extension of Nyquist feedback 
stability for linear time-varying, discrete-time 

systems. In book Emerging Technologies, 

Robotics and Control Systems Vol. 1. 

International SAR, Palermo 2007, pp. 105-110. 

[9] Matz G., Hlawatsch F. (1998) Time-frequency 

transfer function calculus of linear time-varying 

systems based on generalized underspread theory. 

J. Math. Physics, vol. 39, no. 8 pp.4041-4070. 

0 2 4 6 8 1 0 1 2 1 4
-2 5

-2 0

-1 5

-1 0

-5

0

5

1 0

1 5

F re q ue n c y  (H z )

M
a
g
n
it
u
d
e
 (
d
B
)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
- 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

1 0 0

T im e  ( s )

A
m
p
lit
u
d
e

0 . 9 5  *  0 . 2 8 4

1 . 0 0  *  0 . 2 8 4

1 . 0 5  *  0 . 2 8 4


