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Abstract: The paper concerns on extending the 

classical Nyquist theorem to stability analysis of 

linear time-varying (LTV) discrete-time (DT) 

feedback control systems. Frequency methods, are 

well- known tool for analysis and synthesis for 

linear time-invariant systems. Unfortunately, the 

methods cannot be applied for LTV systems. The 

main objective is to show that Bode plots 

approximated using SVD-DFT are adequate 

methods for evaluating stability margins as well as 

external stability for LTV systems. We assume 

discrete-time state space models with time 

dependent system matrices defined on a finite time 

horizon. To solve the problem we employ discrete 

Fourier transform and singular value 

decomposition of a system matrix operator as well 

as properties of power spectral density.  
 

Key-Words: - discrete-time systems, time-varying 

systems, non-stationary systems, stability, finite 

time horizon, frequency analysis 

1. INTRODUCTION 

Classical frequency methods are applicable only to a 

narrow class of the dynamical systems: linear time 

invariant (LTI) systems. It refers to all known 

methods, including the Nyquist stability theorem and 

measures such as stability margins including the gain 

margin and phase margin.  

Stability of an linear time-varying (LTV) system 

without feedback was considered in e.g. [1], [2], [3], 

[4], [5]. The problems are slightly different than for 

LTI systems. It is well-known that unforced piecewise 

constant linear systems, whose associated matrix of 

dynamics takes values in a set of strictly Hurwitzian 

matrices, are not guaranteed to be exponentially stable 

[6], [7], [8], [9]. Instability can occur when an infinite 

number of switches between elements of that set are 

performed. A surprising result is that time-varying 

systems with constant and strictly stable eigenvalues 

may be unstable if the parameters of the dynamics 

matrix do not vary at a sufficiently small slope [10], 

[9]. The problem of switching operations between 

configurations of piecewise continuous stable 

dynamics is of growing interest in multimodel design 

with improved transient performances and of relevant 

interest in adaptive control.  

Many methods for control synthesis (especially 

frequency domain methods) take advantage of closed-

loop stability including calculating the measure of 

relative stability (the stability margin) e.g. the gain and 

phase margin. The classical approach for LTI systems 

is based on the transformation to the  Z domain, where 
pj T

z e
ω= . The system is externally stable if the open-

loop transfer function is a bounded analytic function 

of z in the unit circle. Such an approach cannot be 

used for LTV systems because the Z transform can be 

performed for LTI systems only. Although some 

methods exist for LTI-uncertain systems, it is not 

possible to apply it to a frequency design approach for 

LTV systems.  

The main aim of the paper is to discuss why the 

approximated SVD-DFT Bode diagrams, defined in 

[11], are adequate tools for estimating stability 

margins (gain, phase) and for examining the feedback 

stability for linear time varying (LTV) systems. An 

LTV state space representation is much more powerful 

than an LTI model. Recently, it has been often used 

for improving the accuracy of linear methods, 

especially when the system originally has nonlinear 

behaviour [12]. Our method is approximate, unlike the 

exact LTI systems despite the approximate character 

of SVD-DFT Bode diagrams, especially the phase 

diagram. Similarly for LTI systems, it is a graphical 

method for stability analysis in a feedback loop for 

LTV systems  analogous to LTI ones. The proposed 

method allows calculation of the gain margin as well 

as the phase margin. The main tools used for 

estimating stability for LTV systems are singular 

value decomposition (SVD), discrete Fourier 

transform (DFT), and an analogue to the classical 

Nyquist criterion.  

2. MODEL OF THE SYSTEM 

In order to describe the dynamics of time-varying 

discrete-time systems, one can use difference 

equations with time-dependent coefficients or a 
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generalized description employing state equations 

with time-dependent matrices in following form:  

( 1) ( ) ( ) ( ) ( )p p pk k k k k+ = +x A x B v ,     (2.1) 

( ) ( ) ( ) ( ) ( )p p pk k k k k= +y C x D v , xp(0)=0, (2.2) 

where ( ) n

p k ∈x R  is nominal state, ( ) m

p k ∈v R  is the  

nominal control, ( ) p

p k ∈y R  is the nominal output 

and ( ) n nk ×∈A R , ( ) n mk ×∈B R , ( ) p nk ×∈C R , 

( ) p mk ×∈D R  are system matrices, { }0,..., 1k N∈ − .  

Alternatively, the system model may be described by 

means of operators. Then equations (2.1-2.2) can be 

given in the following form 

( )0
ˆ ˆˆ ˆ ˆ ˆˆ ˆ= + +y CNx CLB D v       (2.3) 

In order that the system (2.3) be equivalent to the 

system (2.1-2.2), operator ˆ ˆ ˆ ˆ+CLB D  must be defined 

in one of the two equivalent notations: either an 

evolutionary one, where operators are written by 

means of sums and products [13], or a matrix-based 

one, where each of the operators can be presented in 

terms of matrices. In order to analyze the stability of 

the system, one has to only know the ˆ ˆ ˆ ˆ+CLB D  

operator which can be expressed with the help of the 

following operators: 

ˆ (1)

( 2) (1) ( 2)N N

 
 
 
 =
 
 
 − ⋅ ⋅ − 

0 0 0 0

I 0 0 0

L A I 0

I 0 0

A A A I 0

⋯

⋯

⋮ ⋮

⋮ ⋱

… ⋯

 (2.4) 

(0)

ˆ

( 1)N

 
 =  
 − 

B 0 0

B 0 0

0 0 B

⋱ , 

(0)

ˆ

( 1)N

 
 =  
 − 

C 0 0

C 0 0

0 0 C

⋱    

(2.5) 

Operator D̂  has a block diagonal form similar to 

ˆˆ  and B C . State xp(⋅),output yp(⋅) and input vp(⋅) have 

the following notations: 

(0)

ˆ

( 1)N

 
 
 
 
 

=
−

p

p

x

x

x

⋮ ,

(0)

ˆ

( 1)N

 
 
 
 
 

=
−

p

p

y

y

y

⋮ ,

(0)

ˆ

( 1)N

 
 
 
 
 

=
−

p

p

v

v

v

⋮  (2.6) 

The input-output operator ˆ ˆ ˆ ˆ+CLB D  defined by eq. 

(2.3-2.5) is a compact, Hilbert-Schmidt operator from 

l2 into l2 and actually maps bounded signals 

[ ]2( ) 0,pv k l N∈ =V  into the signals py ∈Y . 

3. THE SVD-DFT FREQUENCY DOMAIN 

APPROXIMATION ALGORITHM 

The basis of the classical Nyquist stability approach 

for an LTI feedback loop control is the frequency 

domain representation for an open-loop control 

system. This representation is usually called the 

Nyquist diagram and the regeneration theory begun by 

Nyquist [14]. Consequently, the necessary condition 

for self-excited vibration is the synchronous 

appearance of a phase shift and magnification in an 

open-loop control.  

The main problem with the application-similar 

methodology for LTV is the absence of the 

appropriate frequency domain representation of the 

system. We try to show that the SVD-DFT proposed 

in [11] satisfies the criteria to be sufficient for an 

approximate evaluation of feedback stability, gain, and 

phase margins. A detailed description of the SVD-

DFT method is presented in [11]. Here, we only 

describe the key points. 

Frequency responses for LTV systems can be derived 

using following power spectral density property 
2

( ) ( ) ( )y k k v kS G Sω ω ω=       (3.1) 

where ( ),  ( )y k v kS Sω ω  are output and input spectral 

densities respectively. 

A frequency response ( )kG ω  can be determined in a 

unique way if input and output spectral densities of the 

system are known. It can be done by making use of 

singular value decomposition. SVD decomposes 

matrix or matrix system operator into corresponding 

sets of singular values iσ , singular input vectors vi 

and singular output vectors ui i.e. T ˆ ˆ ˆ ˆ= +USV CLB D , 

where S=diag(σi) is a diagonal matrix, and 

orthonormal matrices U, V are composed of column 

vectors ui and vi respectively. 

Discrete power spectral density (PSD) for any 

orthonormal matrix originated from SVD is equal to 1 

if counted as a sum of power spectral densities of 

individual matrix columns {V={vij}, i,j=1…N}. 
2

2 ( 1)( 1) /

1 1

1
( ) 1

N N
j k n N

v k ni

i n

S v e
N

πω − − −

= =

= =∑∑    (3.2) 

where ( )/ 2k pk T Nω = , Tp – sampling period. 

The output power spectral density can be evaluated as 

a sum of power spectral densities of individual 

columns of a matrix defined as a product of US 

matrices. This can be written in the following way: 
2

2 ( 1)( 1) /

1 1

1
( )

N N
j k n N

y k ni i

i n

S u e
N

πω σ − − −

= =

= ∑∑    (3.3) 

where σi – ith singular value of T ˆ ˆ ˆ ˆ= +USV CLB D  

decomposition. 

The main algorithm for the frequency response 

approximation for LTV discrete-time systems take 

advantage of the above properties of PSD. Bode 

diagrams include the magnitude-frequency response 

( )kG ω  : 
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2

2 ( 1)( 1) /

1 1

1
( )

N N
j k n N

k i ni

i n

G u e
N

πω σ − − −

= =

= ∑ ∑     (3.4) 

which defines it uniquely. Analogously with the latter, 

the phase-frequency response ( )( ) arg ( )k kGϕ ω ω=  

can be written as: 

2 ( 1)( 1) /

1

2 ( 1)( 1) /1

1

( ) arg

N
j k n N

niN
n

k i N
j k n Ni

ni

n

u e

v e

π

π

ϕ ω σ

− − −

=

− − −=

=

  
  
  =
  

  
  

∑
∑

∑
   (3.5) 

Singular values σi in eqs. (3.4-3.5) play their part as 

weight functions. The derived relationships hold true 

for both time-invariant and time-variant systems. 

Characteristics obtained in the way shown for time-

invariant systems at a finite time horizon are close to 

Bode characteristics obtained in the classic way by 

substituting ( )exp pz j Tω= .  

Affinity of the diagrams holds only if a large enough 

finite time horizon (FTH) is used. The method is only 

homogeneous but not additive. Approximated Bode 

diagrams are divided into the magnitude and phase 

plot. The magnitude ( )kG ω  can be interpreted as a 

cumulative amplification of all harmonics (output 

power for unitary input signals) in the output spectra 

for a given sinusoidal input. While the phase ( )kϕ ω  is 

approximately equal to that of the phase shift of 

corresponding spectral components in the input and 

output spectra, taken with appropriate weights given 

by corresponding singular values. To avoid division-

by-zero in eq. (3.5), the terms with the denominator 

absolute value relatively close to zero, i.e. 

2 ( 1)( 1) /

1

0
N

j k n N

ni

n

v e π− − −

=

≈∑  are omitted in the outer sum 

(in respect to variable i) in eq. (3.5). 

4. GENERALIZED LTV SYSTEMS FEEDBACK 

STABILITY 

To employ the classical Nyquist theorem for LTI 

systems, one must know the number of unstable poles 

and non-minimal-phase zeros (poles and zeros which 

lie outside the unitary circle or in the right half plane 

for continuous systems). In some cases, it is possible 

to determine the instantaneous values of poles and 

zeros of the LTV system but in general it is impossible 

to determine whether the time-varying pole or zero is 

really stable (minimal-phase). Thus for an LTV 

system, we cannot determine how many times the 

point –1 must be encircled. Therefore, the definition 

below requires stability and a minimal-phase character 

of the open control loop of the system. 

Theorem 1. LTV feedback control system is stable 

when the plant with an open control loop is stable and 

the minimal-phase and approximated SVD Nyquist 

diagram do not encircle the left side the –1 point. 

Equivalently when the approximated Bode diagrams 

achieve a 180° phase shift, the open-loop 

magnification must be less than 1 (0dB). 

In other words, the closed-loop LTV system is stable 

if the magnitude on the Bode diagram is less than 1 

(0dB) for a phase shift 180° 360 ,k k Z± ⋅ ° ∈ . 

The specificity of LTV systems allows one to also 

generate time-varying vibrations, e.g. shifting between 

different eigenvectors within a generation. Therefore, 

the LTV system may generally generate wide 

frequency spectra (time-varying generation). 

Moreover, the correlation existing between different 

spectras can introduce some inaccuracy to results of 

the proposed method as an insufficiently short time 

horizon may similarly cause underestimated results.  

Adaptation of the classical Nyquist stability criteria 

for LTV systems needs some justification. First of all, 

there are important differences between the 

decomposed LTI and LTV feedback control systems 

from the input-output point-of-view. The product of 

the SVD consists of 3 matrices: the input 

[ ]1, , N=V v v… , transfer diagonal S, and the output 

[ ]1, , N=U u u… . Input and output matrices consist of a 

column of singular input and output vectors 

respectively. Let the input of the system be an 

arbitrary singular vector vk. After passing the plant, it 

takes the form of k k=y u s . When the plant is 

controlled in a negative feedback loop, the signal is 

subtracted from the input. New output of the system 

depends on the type of the system. For an LTI system, 

the output signal takes the general form ,k nAv  

whereas for a LTV system, it takes the following 

general form , 1 1, 1 2 2, 2k n k n k nA B B+ + +v v v …  where n 

denotes time shifts and k singular vectors. It is clear 

that the LTV system not only changes the amplitude 

and phase of the input signal but also may introduce 

new associated vectors (k1,k2,…).  

For example, let us assume an open-loop system 

which magnifies the sinusoidal signal with frequency 

f0 slightly smaller than unity with a simultaneous 180° 
phase shift. Although such an LTI system is stable in 

the feedback loop, the LTV system need not be stable 

in the closed control loop. The LTV system allows 

modulation phenomenon and the main band f0 may 

generate side bands with the frequency f1 in the output 

spectra. If the system modulation of feedback 

frequency f1 induces a band in frequency f0, the 

resultant magnification can be larger than unity and 

the feedback loop may be unstable, especially in the 

case of favorable amplifications and phase shifts. 

It is obvious that for an LTV system, the main factor 

of importance for feedback stability of an LTV system 
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is the apparent magnification following from the 

analysis of the whole output spectra for a given input 

signal. Simply measuring the input/output 

magnification for a given sinusoidal input is 

insufficient. 

The following question arises: how do we obtain the 

apparent magnification and phase shift of LTV 

system? Using empirical methods, one can easily 

measure the main band magnification for input 

sinusoidal signals with frequencies from the given 

range. Nevertheless, such data do not take the 

modulation phenomena into account.  

Using the SVD-DFT method, one can approximate the 

magnitude diagram (3.4) as a weighted quadratic mean 

of the DFT magnitude for singular vectors of the 

system operator. The phase diagram (3.5) can be 

approximated as a weighted mean of DFT shifts for 

singular vectors of the system operator. Described 

above are square-averaged diagrams that took typical 

phenomena into account for LTV systems such as 

modulation, frequency transitions etc.  

It should be emphasized that for such diagrams, the 

system may be border line stable for conditions 

analogous to LTI systems (gain 1, phase shift 180°). It 
is caused not only by numerical reasons (finite time 

horizon, limited resolution in time domain, etc.) but 

also by undetermined transitions between different 

frequencies. The SVD-DFT method uses the power 

spectral density which represents the worst case of 

transitions in the spectra. Magnification on the 

diagram (3.4) can be understood as the square root of 

the output signal power for a sinusoidal input with 

unity power. Thus, the real critical gain is always less 

than or equal to the corresponding value read out from 

approximated SVD-DFT Bode diagrams. In many 

cases, the values are quite close, especially for weak 

LTV systems (slowly varying and/or insignificant 

variations) [11], [15].  

5. NUMERICAL EXAMPLE  

We consider a planar robotic manipulator with varying 

inertia links is used as a LTV system and shown in 

Fig. 5.1. The manipulator is placed in a horizontal plan 

and each link has sliding mass µI whose position ri(t) 

can be varied. Such a manipulator was discussed in 

[16], [1] and the idea of the use of inertia links is to 

compensate external perturbation by varying the 

position of the sliding masses. To model the system, 

the following assumptions are used. The links are 

uniform rigid bars of equal length l and mass m. The 

first link is connected to the base by means of an 

elastic spring-hinge of rotational stiffness k1. The 

second link is connected to the first link by a similar 

spring of stiffness k2. The viscous damping is modeled 

by the rotary dampers d1 and d2. The angles ϕ1 and ϕ2 

denote the angular positions of the links relative to the 

x-axis. When disturbed, the links vibrate about their 

equilibrium positions ϕ10 and ϕ20. The actual angular 

positions of the links become 1 10 11ϕ ϕ ϕ= +  and 

2 20 21ϕ ϕ ϕ= + . With the assumption of small angular 

vibrations, a linearized model for the system is defined 

by a matrix equation 

( ) ( ) ( ) ( ) ( ) ( )t t t t t tϕ ϕ ϕ+ + =M D K qɺɺ ɺ   (5.1) 

( ) ( ) ( )
( ) ( )

2 2

1 2 1 1 2 2 2 0

2

2 2 2 0 3 2 2

cos

cos

a l r a lr
t

a lr a r

µ µ µ ϕ
µ ϕ µ

 + + + ∆
=  

+ ∆ + 
M

(5.2) 

( )
( )

1 2 1 1 1 2 2 2 0

2 2 2 0 2 2 2 2

2 cos
( )

cos 2

d d r r d lr
t

d lr d r r

µ µ ϕ
µ ϕ µ

 + + − + ∆
=  

− + ∆ + 
D

ɺ ɺ

ɺ ɺ
 

(5.3) 

1 2 2

2 2

k k k

k k

+ − 
=  − 

K ,  [ ]T11 21( )tϕ ϕ ϕ=�    (5.4) 

23
1 4

a ml= , 21
2 2

a ml= , 21
3 3

a ml= , 0 10 20ϕ ϕ ϕ∆ = −  (5.5) 

In the simulation, the following numerical quantities 

were used: the length l=1m, the mass m=2kg, the 

sliding masses µ1=µ2=0.5kg, the stiffness 

k1=100Nm/rad, k2=80Nm/rad, and the damping 

coefficients d1=0.5Nm/rad/s, d2=0.4Nm/rad/s. The 

configuration of the manipulator is ∆ϕ0=45°. The 

model has been adopted directly from [1]. 

 
Fig. 5.1. Robotic manipulator with varying inertia 

links. 

 

To employ the SVD-DFT method, the continuous-

time model is discretized using zero order hold on the 

inputs and period Tp=0.005 s. Analysis is carried out 

for simplified SISO system with input q1 and output 

1ϕɺ . The system is 4
th
 order with an assumed time 
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horizon of N=1000 steps. The eigenvalues’ positions 

in the simulation horizon are depicted in fig. 5.2. 

 
Fig. 5.2. Location of eigenvalues of matrix A(k) for a 

robotic manipulator system N=1000. 

 
In order to test properties of the proposed stability 

method, it is reasonable to analyse their behaviour in 

the case when the system is critically stable. To 

perform this test, we need amplifications 

corresponding to phase shift of 180 360m± ± ⋅  deg on 

the amplitude diagram. Approximated Bode diagrams 

are depicted in fig. 5.3 and for the open control loop 

impulse response on fig. 5.4.  

 
Fig. 5.3. Approximated SVD-DFT Bode plots 

determined for N=1000. 

 

An alternative for approximated 2D diagrams from 

fig. 5.3 are transformed using DFT 3D shifted impulse 

responses. Such responses can be easily computed by 

column DFT transform of system operator ˆ ˆ ˆ ˆ+CLB D . 

Magnitude and phase 3D diagrams are shown on fig. 

5.5-6. Nevertheless the diagrams are much more 

difficult to analyze. 

 
Fig. 5.4. Impulse responses for a robotic manipulator 

system with open control loop N=1000. 

 

Eigenfrequencies read from fig. 5.3 are 0.6 Hz and 2.6 

Hz. Comparing this to the PMP analysis, Liu [1] (case 

1) has computed that eigenpulsations were included in 

the sets ( )1 3.64,4.15dω ∈ , ( )2
rad14.75,17.5  

sdω ∈ −  

and corresponding pseudo-damping rates were 

included in ( )1 0.11, 0.03δ ∈ − −  with a time average of 

δa1=–0.3 and ( )2 0.8, 0.55δ ∈ − −  and δa2=–0.7. 

Converting frequency in radians to Hertz using the 

equation 2f ω
π= , the results for both methods are 

almost the same.  

 
Fig. 5.5. Magnitude 3D plot for transformed impulse 

responses vs. frequency and time shift (tau) N=200. 

 
Fig. 5.6. Phase 3D plot for transformed impulse 

responses vs. frequency and time shift (tau) N=200. 
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The system is stable so the critical gain can be found 

for the closed control loop. From fig. 5.3, it can be 

seen that for f=100 Hz, ( )( )arg 100 180G = °  and 

( )100 51.45 dBdBm G= = − . Thus, the system has a 

stability margin and a gain margin equal to 51.45 dB. 

The critical gain found experimentally is close to 

�mdB=51.45 dB and equal to _ 52 dBcrit dBk = . Fig. 5.7 

shows 5 impulse responses for a system with 

feedback: one for kcrit=398 in the linear scale and 4 for 

gains k which differ from kcrit by 1% and 2%± ± . 

 
Fig. 5.7. Impulse responses for a robotic manipulator 

system with feedback loop and proportional controller 

N=40. 

6. CONCLUSION 

The paper has shown that the concept of frequency 

diagrams for discrete-time LTV systems defined on 

FTH can be used for feedback stability analysis and to 

estimate relative stability measures – amplitude and 

phase margins. Moreover the well-defined Nyquist 

stability criterion may be extended for LTV systems. 

The SVD-DFT method for LTV systems preserves 

certain properties of conventional frequency analysis 

tools for LTI systems. It makes it possible to take 

advantage of the classical frequency-based approach 

defined for LTI systems and apply it almost directly to 

the LTV case.  

An important achievement of this work is the 

generalization of the well-known Nyquist stability 

theorem for LTV systems using the SVD-DFT 

method. Although the results for LTV systems are 

only approximated (close to true), it is now possible to 

determine the amplitude and phase margin as well as 

the critical amplification gain for a closed control loop 

of an LTV system.  
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