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Abstract: The paper develops computer algebra based method and tools for a class of non-linear 
time-varying (LTV), discrete-time systems. Proposed method base on two following transforma-
tions: from general NL system into state-space dependent piecewise linear (PWL) and from 
PWL into LTV. LTV system is then decomposed using method based on Singular Value De-
composition, Discrete Fourier Transform and Power Spectral Density into approximated Bode 
diagrams. Potential applications are simplified analysis and synthesis in frequency domain of 
weak and/or slow nonlinear systems. Especially the synthesis can be done for each time instant 
which pretend the method for applications in predictive control. The paper begins from short lit-
erature review, description of the model, detailed algorithm with description of the proposed 
method and two numerical examples. 
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1. INTRODUCTION 

Frequency methods are one of the most important 
tools for linear, time-invariant (LTI) systems analy-
sis, nevertheless well-developed concepts and ana-
lytic methods of time-invariant systems cannot be 
applied, even to small class of non-linear (NL) sys-
tems.  

Employed approach base on two following transfor-
mations: from general NL system into state-space 
dependent piecewise linear (affine) (PWL,PWA) and 
from PWL into LTV. Then, approximated LTV sys-
tem is decomposed using SVD-DFT method worked 
out by (Orlowski 2004) into approximated Bode dia-
grams. The method take advantage of two mentioned 
above concepts extensively applied in model predic-
tive control. See for instance: state space dependent 
form (Dutka, Ordys 2004, Ordys, Clarke 1993) and 
PWL system (Bacic, Cannon, Kouvaritakis 2003, 
Grancharova, Johansen, Tondel 2005). 

Frequency approach has been actively employed for 
NL systems in last decades. Many works concerned 
on the analysis on influence of non-linearity in the 

system on input-output spectra of the system. Papers 
are often concerned on NL systems driven by peri-
odic multiharmonic signals (Chua 1979, Schetzen 
1980). As the result NL distortions has been classifi-
cated into harmonic and interharmonic contributions 
(Billings 1989, Solomou 2002). Results of the analy-
sis are often exploit for the system identification (Ev-
ans 1994, Schoukens 1998, Pintelon 2001).  

The purpose of this work is to propose the method 
for simplified NL systems analysis using approxi-
mated Bode diagrams. The reasoning base on the 
concepts taken from LTV systems. The first time-
varying transfer function has been defined by extend-
ing the Laplace transform to the varying impulsive 
response by Zadeh (1950). Later works of frequency 
aspects for LTV systems focuses on modal analysis. 
Ideas of varying eigenvalues or varying natural fre-
quencies have been used without a rigorous defini-
tion e.g. by Maia (1997). Other concept of pseudo-
modal parameters PMP was described e.g. by Liu 
(1999). The pseudo-modal parameters are related to 
the eigenvalues of the varying discrete-time state 
transition matrices by analogy to time-invariant sys-
tems.  
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The SVD-DFT analysis for LTV systems gives not 
only natural frequencies, but also Bode diagrams 
(amplitude and phase). Nevertheless Bode diagrams 
are given by the finite set of frequencies (or singular 
vectors) and corresponding amplifications. The prod-
ucts of SVD-DFT analysis are the characteristics 
(amplitude and phase). It results in that, the informa-
tion included in the diagrams cannot be extracted for 
specific time samples. An important advantage of 
SVD-DFT method is that, the characteristics calcu-
lated for LTI systems are almost identical as like 
classical Bode diagrams. It is important that the sim-
ple physical interpretation of Bode diagrams (e.g. 
amplitude magnification and phase shifting) is true 
only for LTI systems. For LTV and NL systems there 
exists approximation which holds up only some 
properties of the classical diagrams. It should be also 
noted that frequency methods can be applied not to 
large class of nonlinear systems.  

Making the generalisation of frequency analysis for 
NL systems it is necessary to know the characteristic  
behaviour of the system. For LTI systems full infor-
mation is included e.g. in the coefficients of transfer 
function. For LTV systems full information is in-
cluded for example in the system operator. Such op-
erator can be further decomposed into eigenvectors 
of the system.  

For the NL systems full information is included into 
the model of the system, but how can one isolate 
characteristic behaviour of the system ? 

A. First possibility is to determine eigenvectors 
of the systems employing knowledge of the model 
and own experience. The eigenvectors have to be or-
thonormal basis. For linear systems there exists only 
one orthonormal basis, however for NL systems there 
can exist much more bases (even infinity number of 
bases). Each new eigenvector non-orthogonal to pre-
vious eigenvectors make a new basis. Thus trans-
forming  the bases using DFT it is possible to com-
pute frequency characteristics. Non-linearity can be 
interpreted as tendency to change bases.  

Our main motivation is to propose a simple method 
that can be used for NL time varying (TV) communi-
cation channels including mobile communication 
(Strohmer 2005) and for slow NL systems. The sys-
tem is understand as slow NL when the working 
point is changes slowly and not rapidly, e.g. when 
nonlinearity cause only in slow transitions between 
different working points. As it was mentioned earlier 
proposed method take advantage of double transfor-
mation (NL-PWL-LTV) which can be made for each 
time instant. Bode diagrams may be estimated also 
for predicted variables. In such case the approxi-
mated diagrams can be used for simplified calculus 
of control in MPC or adaptative methods using sim-
plified frequency domain approach. 

B. Second possibility is conversion of one NL 
system into n LTV systems. Accuracy obtained for 
such transformation is much more higher then for 
simple linearisation to one LTI model. Choice of 
suitable number of models n, input signals (IS) and 
initial conditions (IC) require some knowledge about 
the system. The input variables (IS and IC) should 
ensure that the conversion from NL into n-LTV will 
be representative for this system for various input 
functions.  In such case the eigenvectors can be done 
using singular value decomposition (SVD). Below it 
will be shown the procedure to determine eigenvec-
tros using the B method. 2. NONLINEAR MODEL 

In general a non-linear, discrete-time control system 
is described by following equation 
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The first step in conversion from NL to n-LTV sys-
tem is to replace non-linear matrix functions depend-
ent on state, input and time , 

,  by time-varying matrices 

dependent only on time . This step 
shold be repeated n times for n representative input 
functions. Next steps have to be repeated for all n 
models. Any obtained model can be described by 
following model 

( ( ), )p k kA x

( )kCIn such case it is very difficult to carry out the 
analysis. Much more specific model for non-linear 
systems is described below. In fact it is state space 
model with non-linear coefficients, called state space 
dependent form. 
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Alternatively, discrete-time system converted to LTV 
can be given as sum or matrix operator. Matrix op-
erator’s notation is given by  
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Response  of a singular value decom-

posed  LTV system having been 

excited by the input  defined by the i-th col-
umn of the V matrix, is equal to the product of i-th 
singular value and i-th column of the U matrix. 
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matrix operators  have diagonal form i.e. 

 (8) ˆ =C 0

and vectors  have following notation 

, ,  (9) 

ˆ+

Output trajectory of the system can be given in the 
following form 

v CN   (10) 

The operator CL  for LTV system is a compact and 
Hilbert-Schmidt operator from l2 into l2 and actually 
maps boundedly signals ( )v  into 
signals . 
The SVD of system operator can be done using de-
scribed above matrix operators. Such decomposition 
presents a generalization of the classic SVD of matri-
ces (Golub 1983). This is possible because operators 
defined for discrete-time systems over a finite time 
horizon are finite dimensional. For such systems the 
time horizon is product of sampling period of the sys-
tem and total number of samples. 
SVD in linear algebra decomposes the operator into 
corresponding sets of singular values , singular in-
put vectors vi and singular output vectors ui. Any 
complex or real matrix X may be written as a product 
of three matrices , where Σ = diag (σi) 
is a diagonal matrix, and orthonormal matrices U, V 
are composed of column vectors ui and vi respec-
tively. 

*Σ ⋅V

B̂

ˆ
i=v v

To start the next stage of analysis one must decom-
pose the system as sets of matrices U, S, V. Matrices 
U, V should be orthonormal matrices containing ei-
genvectors output and input, respectively. Matrix S 
contain corresponding magnifications for particular 
eigenvectors. Such sets are result of SVD analysis 
and are obtained automatically doing procedure B. 
For method A such sets have to be obtained manu-
ally. Independent on the method (A or B) further 
procedure is identical.  

3. THE TRANSFORM THEOREMS 

Theorem 1 Discrete power density spectrum of 
every orthogonal matrix computed as a sum of 
spectral density column vectors is constant and equal 
to 1. 

In particular, for matrix V={vij}, i,j=1…N, 

2

2

1
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N N

k
j

n N

=
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⋅

=

∑ ∑S v

1

     (11) 
j

where , Tp – sampling period. 

Proof of the Theorem follows directly from the or-
thonormality of the SVD matrix (Golub 1983) and 
from unitary properties of the DFT transform. The 
following equation holds true then 

1     (12) 

hence  

    (13) 

Thus the theorem is proved. 

Theorem 2. Discrete input-output power density 
spectrum of system, can be computed as a sum of 
spectral density column vectors of product U⋅S.  

The notation is following 

         (14) 
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5. NUMERICAL EXAMPLES 
where 

2k

p
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, Tp – sampling period, σi=sii – 

ith – singular value of the decomposition 
. 

Selected results of frequency characteristics ap-
proximation for two non-linear systems using dis-
crete operators, SVD and DFT for three different sys-
tems are presented below.  

⋅ ⋅U S

Proof of the theorem follows directly from SVD 
properties, especially from orthonormality of U, V 
matrices. 

5.1  Quadratic, strong non-linear system 

Let us consider following non-linear discrete-time 
system 

4. AMPLITUDE AND PHASE 
CHARACTERISTICS APPROXIMATION 

The relation between input and output power spec-
trum density and amplitude characteristics are de-
scribed following. 
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Properties of the system are strongly dependent on 
the level of the state and input signal. For small sig-
nals, the output goes fast to zero, for signals near but 
less unity output tends slow to zero and for signals 
above unity the system is unstable. 

Let us assume that expected level of state will be in 
the range . ∈< >

The system have strong connection between dynam-
ics of the system and the level of the state. It is as-
sumed that input signals will have amplitudes in the 
range <0.01,0.8>. As the test signals have been cho-
sen sinusoidal inputs with angular frequency of 3 and 
10 rad/s. Magnitude and phase frequency responses 
are depicted on fig. 1. Corresponding time responses 
are plotted on fig. 2. It may be concluded from fig. 1 
that the area of non-linear transitions (NLT) of am-
plitude diagram is large. Expanding the range ampli-
tudes for input signals the NLT area will widen to 
full plane (towards -∞ for signals with levels tends to 
zero and towards +∞ for levels above 1). 
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Operator’s notation, for which has been defined 
fundamental frequency analysis tools, is useful for 
description and simulation for time variant and time 
invariant systems and for a class of nonlinear systems 
all of these systems are defined on finite time 
horizon.  

Developed algorithm enable computing one pair of 
diagrams: amplitude and phase for each set of 
decomposed matrices U, S, V. For n-LTV system the 
result of analysis will be family of n diagrams pairs. 
Representation of NL system can be also understood 
as area on the magnitude diagram. 

Frequency (Hz)

0.01, 0.8x∈< >
Figure 1. Amplitude and phase diagrams for  quad-

ratic system , 10 simulations, 
horizon N=100 steps. 
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First step in the analysis is to convert the model to 
state space and discretise it. Corresponding, matrices 
of discretised model (2-3) can be written as follows: 
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     (23) Figure 2. Output responses for quadratic systems (si-
nusoidal excitation). 

 The results of frequency analysis are unsatisfactory 
and the developed tools should not be used for such 
or similar systems. Moreover the SVD of such sys-
tems for state signals’ levels  or x≥1 is nu-
merically instable. 

0x → where:  x1 is generalised velocity 
 x2 is generalised position 
 Tp is sampling period 
It is assumed that the levels of state variables are less 
than 10 ( ). As the test inputs have 
been chosen 400 random signals with rectangular dis-
tribution <-8,8> and zero initial conditions. Magni-
tude and phase frequency responses are depicted on 
fig. 4. NLT area of amplitude characteristics is 
bounded. The phase characteristics is indeterminate 
for approx. f>1Hz.   

5.2 Oscillatory, weak non-linear system 
1 210, 10x x< <

The system is discretised analogue oscillatory ele-
ment with non-linear coefficients. The system can be 
described by following differential equation  
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The non-linear coefficients β, ω0 are given in the 
polynomial form. 
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It is assumed that the coefficients of the polynomials 
are following: 
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�Characteristics of the coefficients β, ω0 vs.  
respectively are plotted on fig. 3. 
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Figure 4. Amplitude and phase diagrams for  oscilla-
tory system u , 400 simulations, ho-
rizon N=200 steps.  
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Similar results can be obtained for other input sig-
nals, e.g. sinus, step functions and nonzero initial 
conditions, under assumption of boundedness of state 
variables to given interval. Lesser number of simula-
tions follows of course lower accuracy for the NLT 
area. 

Plotted diagrams allow to select appropriate control-
ler for closed feedback loop, similarly as for linear 
systems. Moreover NCT area of amplitude diagram 
can be used as a measure of the degree of nonlinear-

Figure 3. Coefficients β (damping ration), ω0 (natural 
frequency) vs. generalised position and absolute 
velocity ( respectively).  and y �
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