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Solution of the optimal non-linear GPC method is mostly obtained in an iterative way with 3 following 
steps: initialisation, transformation from non-linear system given in general form into time-varying state-
dependent form, and checking whether the convergence condition is satisfied. The main aim of this paper is 
to analyse how the transformation method from nonlinear model into time varying state-space dependent 
form have effect on the convergence of the algorithm. We try to answer following questions: If chosen 
transformation method is suitable ? If the convergence to the optimal solution is guaranteed ? If the number 
of iterations can be cut down ? 

1   Introduction 

Significant attention has been given recently to nonlinear predictive control (NLPC) methods. A large class 
of these methods uses common 3 steps algorithm. For example: Kouvartiakis et. al. [1] employ optimal 
control trajectory calculated in the previous time instant of the control algorithm for the NLPC. Lee et. al. 
[2] uses similar methodology and employing linearization at points of the seed trajectory for discrete-time 
model of the system. Also technique presented in [3], [4], [5], [6] uses similar idea as [1], [2], but with the 
different model representation and optimisation technique. The nonlinear system described by the discrete-
time nonlinear state space model can be rearranged into so-called state and control dependent linear form 
[7], [8]. Non-linear behaviour of the system is included in the state and control dependent matrices. If the 
future trajectory prediction for the system may be obtained within the algorithm then one can pretend that 
future behaviour of the system is known during the prediction horizon [3]. Such system can be treated as a 
linear time-varying (LTV) one. Most often the algorithm has three following common steps  [1], [3]: 

1. Choose the initial control trajectory, cost functional (e.g. weighting matrices) and possibly the 
reference trajectory. 

2. Transform the model of a non-linear system given in following general form 

 ( ) ( ) ( )( )1 ,k k k+ =x f x u , k  (1) 

into the time-varying state-dependent form given by  

 ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 , , , ,k k k k k k k k k+ = ⋅ + ⋅x A x u x B x u u  (2) 

3. Calculate new control and check if the convergence condition is satisfied. If not go to step 2, 
otherwise return the final optimal control.  

Our considerations are concerned around transformation method from step 2. It is obvious that there exists 
infinite number of possible transformations of eq. (1) into eq. (2). We try to answer if chosen transformation 
is suitable and convergent. 

2   Model description 

It is well known that every discrete LTV system can be described by evolutionary operators.  
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( ) ( )( ) ( )( )( )
0

kk = +x Nx L Bu k      (3) 

Using the past trajectory, the matrices ( ) ( ) ( )( ) ( ) ( ) ( )( ), , ,  , ,k k k k k k k k= =A A x u B B x u  may be 

calculated for the subsequent points on the trajectory and the nonlinear system (1) is approximated by LTV 
model with matrices . Also if the system is defined on finite time horizon it is possible to 
define operators N, L, B in following block matrix form.  
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where   ( ) ( ) ( )1k
i k kφ = ⋅ − ⋅ ⋅A A A… i . Vectors  have following block vector notation i.e. ˆ ˆ,  x u

( ) ( )ˆ 1
TT T N =  x x x ,  ( ) ( )0 1ˆ N −  = u uu       (5) 

Thus the state equation can be rewritten in following form 

0
ˆ ˆ ˆˆ ˆ= ⋅ + ⋅x LB u N x      (6) 

The operator  is a compact and Hilbert-Schmidt operator from l2 into l2 and actually maps boundedly 
signals 

ˆ ˆLB
[ ]2( ) 0,lu k ∈ =U N  into signals x∈ X . 

3   Convergence of the algorithm 

Definition 1. Let the cost functional for arbitrary i-th iteration of the algorithm from section 1 is denoted by 
. Let the same functional for the next i+1 iteration of the same 

algorithm is denoted by 

( ) ( ) ( ) ˆˆˆ ˆ ˆ ˆ ˆ ˆ
T T

ref refJ i = − − +x x P x x u Qu

( ) ( ) ( ) ˆˆˆ ˆ ˆ ˆ ˆ ˆ
T T

ref ref− − +n nx x P x x u Qu1J i + = n n . Coefficient of functional convergence 

is denoted by RJ and defined by following ratio: 
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Definition 2. Let the state trajectory deviation norm from reference trajectory for any given time horizon is 
given by ˆ ˆ ref−x x  for the i-th iteration of the algorithm and ˆ ˆ ref−nx x  for the next i+1 iteration. 

Coefficient of state error convergence is denoted by Rc and defined by following relationship: 

( )
ˆ ˆ

:
ˆ ˆ

ref
c

ref

R i
−

=
−

nx x

x x
     or in particular case for , ˆ ref =x 0 ( )

ˆ
:

ˆcR i = nx
x

   (8) 

Theorem 1. State trajectory in the consecutive iteration of the algorithm from section 1, calculated for any 
nonlinear system transformed into state-dependent LTV form under assumption ˆ ˆ 1∆ <AL  can be calculated 

from following equation: 

( ) ( )( )1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
−

= − ∆ + −n A n nx I L x L B u Bû     (9) 



where:   ( ) ( )( ) ( ) ( )( ) ( ) ( )( )ˆ ˆˆ , , , , , ,k k k k k k k k∆ = −A n n n n nx u A x u A x u k

)

 - difference system operator. 

ˆ ˆ,x u ,  - state, input trajectory, input operator and system operator in i-th iteration of the algorithm,  ˆ ˆ,B L
ˆ ˆ,n nx u , ,  - state, input, reference trajectory and input operator in i+1-th iteration of the algorithm. ˆ refx ˆ

nB

Proof follows from similar results proved for perturbed systems. The system in i+1 iteration can be treated 
as perturbed system from i-th iteration, thus the system in i+1-th can be written in following form 

(ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ= + ∆ + −n A n n nx x L x L B u Bu  or equivalently ( ) (ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ− ∆ = + −A n n nI L x x L B u Bu)  

To derive  trajectory, the term ˆ nx ( )ˆ ˆ− ∆AI L  must be invertible. Assuming that ˆ ˆ 1∆ <AL , the term 

 is invertible. Calculating left side inverse of above equation follows to eq. (9).   ( ˆ ˆ− ∆AI L )

Corollary 1. Functional convergence coefficient of the algorithm from section 1 can be evaluated from 
following equation: 
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Corollary 2. State error convergence coefficient of the algorithm from section 1 can be evaluated from 
following equation: 

( )
( ) ( )( )1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
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Corollary 3. State error convergence coefficient of the algorithm from section 1 for ˆ ref =x 0  can be 
evaluated from following equation: 

( )
( ) ( )( ) ( )

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ
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Proofs follow directly from triangle inequality for norms.  

Theorem 2. If the optimal control ( ) (( )0 0
ˆ ˆˆˆ ˆ, , ,opt = nu g A x u B x ûn  is calculated for a some , then the 

same optimal control follows from the condition: 
0ˆ ,nu x

( ) ( )( )0 0
ˆ ˆˆˆ ˆ, , ,opt opt opt=u g A x u B x û      (13) 

In other words, the algorithm is convergent if the optimal control  follows directly from time varying 

system matrices  linearized at u . 

ˆ optu
ˆ ˆ,opt optA B ˆ opt

Proof. Let us assume that exists such , that ˆ optu

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 , , , ,opt opt opt opt opt opt optk k k k k k k k k+ = ⋅ + ⋅x A x u x B x u u   (14) 

( ) ( ) ( )( ) ( ) ( ) ( )( )0 0
ˆ ˆ ˆ ˆˆ ˆ, , , ,   , , , ,   0... 1opt opt opt opt opt opt opt optk k k k k k k N= =A A x u A x u B B x u B x u = −   (15) 

( ) ( ) ˆˆˆ ˆ ˆ ˆ ˆ ˆ min
T T

opt opt ref opt ref opt optJ = − − + =x x P x x u Qu     (16) 



New control estimated from step 3 of the algorithm is evaluated from linearized time varying system 
matrices 

( )ˆ ˆˆˆ ,opt opt=nu g A B      (17) 

Let us assume that  then ˆ ˆ opt≠nu u ( ) ( )0 0
ˆ ˆ ˆˆ ˆ, ,   ,opt opt≠n nA x u A B x u B̂≠  and Jn >Jopt. What is divergent from 

the optimal control. Thus the equation (13) is necessary condition for convergence of the algorithm from 
section 1.             

Functional convergence coefficient RJ can be easily estimated numerically on the basis of known current, 
previous, reference state and input trajectories. Error norm convergence coefficient Rc can be evaluated 
using only current , previous  and reference  state trajectories. From the numerical point of view 
calculating of the coefficients Rc and RJ is quite easy task. Nevertheless from analytical point of view 
coefficient Rc is easier to analyse. In practise, determining the convergence of the algorithm is strongly 
connected either with Rc or RJ factor. In respect to similar properties of Rc and RJ we will call further both 
the coefficients by R. 

ˆ nx x̂ ˆ refx

The algorithm is monotonically convergent if 1R ≤ . The closer the coefficient to zero, the faster the 
absolute convergence. However when approaching to the optimal solution . For linear systems 1R → 1R =  
because the solution is calculated from the first iteration of the algorithm. For value  the algorithm can 
be divergent. In some cases Rc can oscillate above and below 1. In such case the algorithm is convergent if 
for consecutive iterations proceed . Convergence to the optimal solution 

1R >

1R → optJ J→  is always 

connected with approach zero of the nonlinearity differences ∆̂A , ( )ˆ ˆL B uˆˆ −n nu B ˆ . Similarly convergence 

coefficients Rc, RJ approach 1.  

Corollary 4. What shall be done to ensure R near 1 ? Two following conditions have to be satisfied. 
Operators product  should approach zero matrix or equivalently ˆ ∆̂AL ˆ ˆ 0∆ →AL . Norm of operator  

cannot be less then 1, what follows from (4). Norm 

L̂

∆̂A  can be arbitrary small. The value is dependent on 
the degree of nonlinearity of the system and the decomposition into matrices A and B carried out in step 2 of 
the algorithm. For the linear system matrix A does not depend on input and state, thus the norm is equal to 
zero. Assumption A=0 results in ˆ 0∆ =A . However it also results in arising the difference ( )ˆˆ ˆBuˆ ˆ −n nuL B  

especially drastically for small values of input u . In most cases it results in divergence of the algorithm, 
similarly as assumption B=0, which results in arising of norm 

ˆ

∆̂A . 

4   Additive decomposition 

Arbitrary function f x  can be transformed into series of N additive components. The notation 

can be simplified for fixed input trajectory and initial conditions and 

( ) ( )( , ,k k ku )
( ) ( )( ), ,i i k k k= x uf f . In particular for 

indecomposable function N=1. 

( ) ( )( ) ( ) ( )( )
1 1

, , , ,
N N

i
i i

k k k k k k
= =

= i=∑ ∑f x u f x u f    (18) 

Every system (1) can be decomposed into state dependent form (2). In general it takes following form: 
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i i j i i j i i i i R i i i i Q i
i j i j i i i i i
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∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑x f f f f f f f
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… … Bu
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where 



, , ,
1 1 1 1

,   ,    1
QN N R

j j i j i j j i j i i j i jii i j j
x uα β α

= = = =

= = ∀ +∑ ∑ ∑ ∑a f b f ,β =    (20) 

Component column vectors of matrices A(k) and B(k) can be determined under assumption that following 

limits exists and are finite 
0 0

lim , lim
j j

j j

j x j u

j j

j j

x u
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a b
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where  

( ) [ ] ( )1  ,Rk k = = A a a B b b1 Q  , R – order, Q – number of inputs, ,j ja b  - column vectors with R rows 

Every nonlinear system can be decomposed into additive form. Although it should be recalled corollary 4. 
Norms ( )ˆ ˆ ˆ ˆˆ ˆ and ∆A n nL B u Bu−  should be possibly small.  

Let us assume, that function f(x,u,k) can be decomposed into 4 following additive terms: 

( ) ( ) ( ) ( ) (1 2 3 4, , , , , ,k k k k= + + +f x u f x f x u f u f )k    (22) 

Functions f must be continuous and following limits must be finite.: 

31

0 0
lim , lim
x ux u→ →

ff
, and either 2

0
lim ,  or/and lim
x

2

0ux u→

f f
→

   (23). 

Main aim of control is to minimize input and state of the system which follows ( ) ( )0, 0k k→ →x u  for 
. Decomposition of components f1 and f3 is intuitive, e.g. Ax=f1 and Bu=f3. If the components are 

assigned in different way often results in fast increasing of norms 

k N→

( )ˆ ˆ i ∆ L B̂ ˆˆ ˆ−A n nu Bu

( )ˆ ˆˆ ,= A B

. Furthermore 

limits (23) will be infinite and the algorithm from section 1 would be divergent. Another question is how to 
assign components f2 and f4 ? First of all, the assigning depends on the function u g . If it takes the 

following form: 

ˆ n

( )( ) ( )
1

0
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

T −

= − +nu LB PLB Q LB PNx
T

    (24) 

significant for the algorithm is conditional number in respect to the inverse of matrix . 

The number is defined as ratio of maximal to minimal singular value of the matrix. Norms of matrices A,B  
should approach neither zero nor infinity. In practise, the best performance is if the norms of matrices A,B 
have similar order of magnitude. 

( )( )ˆˆ ˆ ˆ ˆ ˆT
+LB PLB Q

If the input tends faster to zero then the state of the system ( ) ( )
0

0
k k

k k
>
∀ − >x u , f2 should be assigned to 

Bu, in respect to stronger dependence from u. From the same reason f4 should be assigned rather to Ax then 
to Bu, e.g.  

1 4 2,    = 3= +Ax f f Bu f f+      (25) 

Minimization of norms ( )ˆ ˆ ˆ ˆˆ ˆ and ∆A n nL B u Bu−  follows from equations (10), (11), (12). On the other 

hand the system should be balanced realization or at least norms of matrices A, B should be bounded to 



ensure invertibility in equation (24). When the function f does not have components f1 and f4 , one have to 
assign a part of component f2 to Ax, to avoid zero matrix A and problems with computing inverse in (24).  

( )2 ,    = 1a a 2 3= − +Ax f Bu f f     (26) 

Value of coefficient a depends on the form of functions f2 and f3. Usually the value does not exceed 0.05-
0.1. 

5   Numerical examples 

In these examples control is calculated by iterative using the algorithm from section 1 and equation (24), 
where x0 is initial condition for current prediction,  is cost function and ˆˆˆ ˆ ˆ ˆT TJ = +x Px u Qu ˆˆ ˆ ˆ,P Q= =P I Q I  are 
unitary weight matrices. 

Example 1. Necessary condition 

Let us think over convergence of the algorithm for following dynamical nonlinear discrete-time system: 

2 3
1    8k k kx x u x+ 0= + =

k

     (27) 

The system can be transformed into state space dependent form. 

2
1

( ) ( )k k

k k k k
A x B u

x x x u u+ = ⋅ + ⋅      (28) 

The system is so simple that the optimal input sequence can be match out of hand. Control in equation (27) 
is in 3rd power and state in 2nd thus optimal control which satisfy  is following dead-beat 
control. 

ˆ ˆ ˆ ˆT TJ = +x x u u

( )
2
3
0 0

0     0
opt

x ku k
k

− == 
>

     (29) 

Matrices A, B and system operators for time horizon N=2 are respectively equal. 

( ) ( )
4
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0 0 0 0,   
0   0 0   0
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x k x kA k B k
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 = = = = 
> > 

,    
4
3

00
1 0 0ˆ ˆ ˆ,   ,   
0 1 00   0

xx    
= = =    
      

B L N  (30) 

and after calculating the new control un we have: 

( )( ) ( )
10
3 2

3
8
3

1
0

0 0

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ     0     0
1

T
TT T

opt
x

x
x

−  
 = − + = − ≠ − =   +  

nu LB LB I LB Nx u   (31) 

In general new control calculated on the basis of optimal control is not optimal control. On the basis of 
theorem 2 it can be said that the algorithm can be divergent. As well functional J calculated for optimal 
control uopt is equal to J=16, the same functional calculated for new control un take value J≅16.6. Such 
results confirm divergence of the algorithm for analysed example. 

Example 2. Additive decomposition 

Let us modify the system from example 1 by introducing additional feedback term. In such case model of 
the system can be described following: 



2 3
1 0.5     8k k k k kx x x u u x+ 0= + + =      (32) 

First of all let us assume that initial control sequence is equal to [ ]ˆ 0.7 1,1,1,...,1= − ⋅u  and relative tolerance 
is less then 0.01. For following decomposition of the system (32)  

( ) ( )2
1

( , ) ( , )

0.05 0.45
k k k k

k k k k k k

A x u B x u

kx x u x x u+ u= + ⋅ + + ⋅

) k

    (33) 

the algorithm is convergent and the solution is determined in 8 steps. On the other hand assuming following 
decomposition ( ) ( 2

1

( ) ( , )

0.5
k k k

k k k k k

A x B x u

x x x x u u+ = ⋅ + + ⋅  the solution is determined in 26 steps.  

What decide if the algorithm is convergent ? After analysis of several examples it has been noticed that 

conditional number in respect to inverse of matrix ( )( )ˆ ˆ ˆ ˆ ˆT
+LB LB I  correlate with convergence of the 

algorithm. For the first case eq. (33) maximal condition number among iterations is equal to 3.4e38. In the 
second case (convergence after 26 steps) the condition number is equal to 9.5e162. For divergent 
configurations maximal condition number is divergent to infinity. Although it is difficult to give an 
analytical rule how to decompose the nonlinear system into state dependent form. Step 3 of the algorithm 
from section 1 should be modified so as to minimize condition number in respect to inverse. It can be 
achieved not only by changes in coefficients of the decomposition into state space dependent form but also 
by changing initial control sequence of the system. The best initial sequence would be close to the optimal 
solution, good initial sequence has at least similar order of magnitude as the optimal solution. 

Initial state have significant meaning to predictive control of nonlinear system. Considered above example 
with x0=8 is quite difficult, because the system naturally goes to be unstable. At least a slight offset of given 
decomposition follows to divergence of the algorithm. Much more easier is the case with e.g. x0=2 which is 
convergent for wide class of configurations. The convergence is assured e.g. for decompositions which 
satisfy following conditions: 

( ) ( )( ) ( )( )3 2
1 1 1 2 1 1 2

( , ) ( , )

1 1 2

1 1 / 1 /

0.8,1 ,  b 0.48,0.5 ,  b 0.7,1
k k k k

k k k k k k k k k k

A x u B x u

2
kx a x b u b u x x a x u b x b u u

a

+ = + − + − ⋅ + − + + ⋅

∈ ∈ ∈

  (34) 

Assuming that that necessary condition from theorem 2 is satisfied the algorithm should be convergent to 
optimal solution but it could be only local optimum.  

6   Conclusion 

The main aim of the study is to answer 3 following questions, concerning to transformation from general 
nonlinear form into state space dependent form. 

1) If chosen transformation method is suitable ?  

Answer to this question follows from necessary condition for convergence. It can be deduced from 
theorem 3 and also from theorems 1-2, concerning the uniform convergence. 

From practical point of view chosen method is suitable if: 

a) Assumptions of theorem 3 are satisfied – the method is not divergent.  

b) Condition number in respect to inverse is finite. 

c) Nonlinearities are decomposed into matrices of the state space dependent form so as to the 
difference operators of the system would be as small as possible.  



Although condition a) is the most important, it is also very difficult to settle. Condition b) is significant 
and easy to compute, which generally makes it very useful. The least significance has condition c). The 
algorithm can be convergent non-uniformly, what often take place especially for strong nonlinear 
systems.  

2) If the convergence to the optimal solution is guaranteed ?  

Within a framework of the study the sufficient condition for convergence have not been found. However 
there were proposed a few conditions (equations (7), (8)) for numerical detecting stability/instability of 
the algorithm. 

3) If the number of iterations can be cut down ? 

In many cases can be. Example 2 acknowledge that at least small modification of the decomposition 
results on the number of iterations. Recalling example 2: convergence for decomposition ( ) kA k x=  is 

much more slower than for ( ) 0.05kA k x= +  (26 vs. 8 steps). Nevertheless it should be mentioned that 
the convergence does not depend monotonically on the decomposition, the algorithm can be divergent 
for intermediate decompositions, e.g. for ( ) 0.056kA k x= +  or ( ) 0.049kA k x= +  the algorithm is 
divergent. 

Much more difficult is question : how the number of iterations can be cut down? At the moment the 
optimization can be made rather using try and errors method than any analytical one. Moreover for 
different initial conditions optimal decomposition would be different, what really take place for each 
time sample. 
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