Artykuły naukowe (WTiICh)

Przeglądaj

Ostatnie zgłoszenia

Teraz wyświetlane 1 - 20 z 31
  • PozycjaOpen Access
    Facile synthesis of accordion-like porous carbon from waste PET bottles-based MIL-53(Al) and its application for high-performance Zn-ion capacitor
    (KeAi Chinese Roots Global Impact, 2023) Li, Jiaxin; Zhang, Shuai; Hua, Yumeng; Lin, Yichao; Wen, Xin; Mijowska, Ewa; Tang, Tao; Chen, Xuecheng; Ruoff, Rodney; Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065, Szczecin, Poland; Key State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, China; Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China; Institute for Basic Science Center for Multiple Dimensional Carbon Materials, Ulsan, 44919, Republic of Korea; Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej
    It is of great scientific and economic value to recycle waste poly (ethylene terephthalate) (PET) into high-value PET-based metal organic frameworks (MOFs) and further convert it into porous carbon for green energy storage applications. In the present study, a facile and cost-effective hydrothermal process was developed to direct recycle waste PET bottles into MIL-53(Al) with a 100% conversation, then the MOF-derived porous carbon was assembled into electrodes for high-performance supercapacitors. The results indicated that the as-synthesized carbon exhibited high SSA of 1712 m2 g−1 and unique accordion-like structure with hierarchical porosity. Benefit to these advantageous characters, the assembled three-electrode supercapacitor displayed high specific capacitances of 391 F g−1 at the current density of 0.5 A g−1 and good rate capability of 73.6% capacitance retention at 20 A g−1 in 6M KOH electrolyte. Furthermore, the assembled zinc ion capacitor still revealed outstanding capacitance of 335 F g−1 at 0.1 A g−1, excellent cycling stability of 92.2% capacitance retention after 10 000 cycles and ultra-high energy density of 150.3 Wh kg−1 at power density of 90 W kg−1 in 3M ZnSO4 electrolyte. It is believed that the current work provides a facile and effective strategy to recycle PET waste into high-valuable MOF, and further expands the applications of MOF-derived carbons for high-performance energy storage devices, so it is conducive to both pollution alleviation and sustainable economic development.
  • PozycjaEmbargo
    Ultra-stable sandwich shaped flexible MXene/CNT@Ni films for high performance supercapacitor
    (Elsevier, 2023) Li, Shiyun; Zhang, Qiaoyu; Liu, Lina; Wang, Jiangang; Zhang, Ling; Shi, Minjie; Chen, Xuecheng; School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej
    MXene exhibits high volume capacity, but poor flexibility and mechanical properties have seriously limited its further applications. To address this issue, a sandwich shaped flexible MXene/CNTs@Ni film has been fabricated via a simple filtration approach, wherein the nickel-electroless plating on CNTs (CNTs@Ni) are utilized as the effective interlayer spacers of MXene nanosheets to stabilize their layer structures. In addition, the optimized MXene/CNTs@Ni film electrode as a binder-free and self-supported electrode exhibits robust mechanical stability and impressive electrochemical properties, especially with a high specific capacitance of 990.8 F cm−3, about 1.4 times and 2.4 times higher than that of MXene/CNTs film electrode and pristine MXene film electrode, respectively. A flexible symmetrical supercapacitor (FSMS) was constructed based on MXene/CNTs@Ni film. Notably, the FSMS owns a high energy density of 14.5 Wh kg−1, a high power density of 2571.4 W kg−1, and a good cycling stability, suggesting its potential application in portable energy technologies.
  • PozycjaOpen Access
    Recycling of Plastic Wastes for the Mass Production of Yolk−Shell-Nanostructured Co3O4@C for Lithium-Ion Batteries
    (ACS Publications, 2023) Li, Jiaxin; Dou, Fei; Gong, Jiang; Gao, Yanshen; Hua, Yumeng; Sielicki, Krzysztof; Zhang, Dengsong; Mijowska, Ewa; Chen, Xuecheng; Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin 71-065, Poland; School of Materials Science and Engineering and Research Center of Nano Science and Technology, Shanghai University, Baoshan, Shanghai 200444, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Hongshan, Wuhan; School of Environment and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej
    Facing the ever-increasing production of municipal plastics, great efforts have been made to recycle plastic waste into high value-added products. As the main components of plastic wastes, PP, PE and PS are uncharred polymers, which are hard to be carbonized under normal conditions. To address this issue, transition metal catalysts (Co3O4) were introduced to carbonize the plastic waste with high carbon yields. Herein, the mixed waste plastics (PP/PE/PS) were carbonized into yolk-shell structured Co3O4@carbon nanomaterials with high yield of 49 wt%. A high capacity of 1066 mAh g-1 at 0.1 A g-1 after 100 cycles in lithium-ion batteries. Moreover, the galvanostatic intermittent titration technique (GITT) results estimated that the YSS Co3O4@C possessed a higher Li+ diffusion coefficient, ensuring an improved cycling stability and rate performance. The present strategy not only provides a potential approach for recycling waste plastics into high-value carbon materials, but also shows the possibility for the mass production of high-performance nanosized anode materials for LIBs in a commercial way.
  • PozycjaEmbargo
    Influence of the calcination of TiO2-reduced graphite hybrid for the photocatalytic reduction of carbon dioxide
    (Elsevier, 2021-06-09) Morawski, Antoni Waldemar; Kusiak-Nejman, Ewelina; Wanag, Agnieszka; Narkiewicz, Urszula; Edelmannova, Miroslava; Reli, Martin; Koci, Kamila; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Nieorganicznej i Inżynierii Środowiska; Technical University of Ostrava. Institute of Environmental Technology; West Pomeranian University of Technology in Szczecin. Faculty of Chemical Technology and Engineering. Department of Inorganic Chemical Technology and Environment Engineering
    In this work, a conversion of carbon dioxide (CO2) into methane, carbon monoxide, as well as hydrogen was investigated. The TiO2/rGO photocatalysts were prepared by two steps: solvothermal method and calcination at 500, 800, and 1000 ◦C in an argon atmosphere. The obtained samples were characterized by X-ray diffraction (XRD), UV–vis diffuse reflection spectroscopy (UV–vis/DRS), N2 adsorption-desorption and analysis of carbon content. The activity of photocatalysts was evaluated in the photocatalytic reduction of CO2. The TiO2/rGO-10 without calcination showed the highest activity toward CO2 conversion. It was found that all samples after rGO modification exhibited good activity toward H2 generation with high selectivity. The enhanced photocatalytic performance was attributed mainly to the presence of graphene due to its excellent electron transport/collection ability.
  • PozycjaOpen Access
    DFT Calculation of Carbon-Doped TiO2 Nanocomposites
    (MDPI, 2023-09-07) Gustavsen, Kim Robert; Feng, Tao; Huang, Hao; Li, Gang; Narkiewicz, Urszula; Wang, Kaiying; Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway; Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Nieorganicznej i Inżynierii Środowiska
    Titanium dioxide (TiO2) has been proven to be an excellent material for mitigating the continuous impact of elevated carbon dioxide concentrations. Carbon doping has emerged as a promising strategy to enhance the CO2 reduction performance of TiO2 . In this study, we investigated the effects of carbon doping on TiO2 using density functional theory (DFT) calculations. Two carbon doping concentrations were considered (4% and 6%), denoted as TiO2 -2C and TiO2 -3C, respectively. The results showed that after carbon doping, the band gaps of TiO2 -2C and TiO2-3C were reduced to 1.58 eV and 1.47 eV, respectively, which is lower than the band gap of pure TiO2 (2.13 eV). This indicates an effective improvement in the electronic structure of TiO2. Barrier energy calculations revealed that compared to pure TiO2 (0.65 eV), TiO2 -2C (0.54 eV) and TiO2 -3C (0.59 eV) exhibited lower energy barriers, facilitating the transition to *COOH intermediates. These findings provide valuable insights into the electronic structure changes induced by carbon doping in TiO2, which can contribute to the development of sustainable energy and environmental conservation measures to address global climate challenges..
  • PozycjaOpen Access
    ZnO/Carbon Spheres with Excellent Regenerability for Post-Combustion CO2 Capture
    (MDPI, 2021-10-28) Pełech, Iwona; Sibera, Daniel; Staciwa, Piotr; Kusiak-Nejman, Ewelina; Kapica-Kozar, Joanna; Wanag, Agnieszka; Narkiewicz, Urszula; Morawski, Antoni W.; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Nieorganicznej i Inżynierii Środowiska; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Budownictwa i Inżynierii Środowiska. Katedra Budownictwa Ogólnego; West Pomeranian University of Technology in Szczecin. Faculty of Chemical Technology and Engineering. Department of Inorganic Chemical Technology and Environment Engineering; West Pomeranian University of Technology in Szczecin. Faculty of Civil and Environmental Engineering. Department of General Civil Engineering
    This paper examines the synthesis of the ZnO/carbon spheres composites using resorcinol—formaldehyde resin as a carbon source and zinc nitrate as a zinc oxide source in a solvothermal reactor heated with microwaves. The influence of activation with potassium oxalate and modification with zinc nitrate on the physicochemical properties of the obtained materials and CO2 adsorption capacity was investigated. It was found that in the case of nonactivated material as well as activated materials, the presence of zinc oxide in the carbon matrix had no effect or slightly increased the values of CO2 adsorption capacity. Only for the material where the weight ratio of carbon:zinc was 2:1, the decrease of CO2 adsorption capacity was reported. Additionally, CO2 adsorption experiments on nonactivated carbon spheres and those activated with potassium oxalate with different amounts of zinc nitrate were carried out at 40 °C using thermobalance. The highest CO2 adsorption capacity at temperature 40 °C (2.08 mmol/g adsorbent) was achieved for the material after activation with potassium oxalate with the highest zinc nitrate content as ZnO precursor. Moreover, repeated adsorption/desorption cycle experiments revealed that the as-prepared carbon spheres were very good CO2 adsorbents, exhibiting excellent cyclic stability with a performance decay of less than 10% over up to 25 adsorption-desorption cycles.
  • PozycjaOpen Access
    Photocatalytic Reduction Efficiency of CO2 Depending on ZnO Particle Size
    (MDPI, 2023-09-03) Morawski, Antoni Waldemar; Gano, Marcin; Ćmielewska, Katarzyna; Kusiak-Nejman, Ewelina; Pełech, Iwona; Staciwa, Piotr; Ekiert, Ewa; Narkiewicz, Urszula; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Nieorganicznej i Inżynierii Środowiska; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Organicznej i Materiałów Polimerowych; West Pomeranian University of Technology in Szczecin. Faculty of Chemical Technology and Engineering. Department of Inorganic Chemical Technology and Environment Engineering; West Pomeranian University of Technology in Szczecin. Faculty of Chemical Technology and Engineering. Department of Organic Chemical Technology and Polymer Materials
    In the face of increasing global carbon dioxide emissions and the urgent need to mitigate climate change, the development of efficient and sustainable strategies for CO2 conversion has gained significant attention. One of the methods of eliminating the harmful effects of CO2 is its photoreduction. In this paper, ZnO was used as an effective photocatalyst for the photoreduction of CO2 in a gas-phase system. The influence of particle size on the process efficiency was investigated. The ZnO materials applied in the studies were characterized using XRD, SEM, and low-temperature nitrogen adsorption (BET) methods. The pore volume distribution was calculated based on the DFT method. The investigation confirmed that it had a significant impact on the formation of the product of photocatalysis carbon dioxide. The main identified product was carbon monoxide. Hydrogen and methane were detected as well. Based on the results, it was found that the process efficiency was enhanced with decreasing ZnO particle size, and the most effective catalyst for the photoreduction of CO2 was the ZnO sample with the smallest particle size (18 nm).
  • PozycjaOpen Access
    On the Selectivity of Simultaneous CO2 and N2 Reduction Using TiO2/Carbon Sphere Photocatalysts Prepared by Microwave Treatment and Mounted on Silica Cloth
    (MDPI, 2023-08-24) Kusiak-Nejman, Ewelina; Ćmielewska, Katarzytna; Pełech, Iwona; Ekiert, Ewa; Staciwa, Piotr; Sibera, Daniel; Wanag, Agnieszka; Kapica-Kozar, Joanna; Gano, Marcin; Narkiewicz, Urszula; Morawski, Antoni Waldemar; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Budownictwa i Inżynierii Środowiska. Katedra Budownictwa Ogólnego; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Nieorganicznej i Inżynierii Środowiska; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Organicznej i Materiałów Polimerowych; West Pomeranian University of Technology in Szczecin. Faculty of Chemical Technology and Engineering. Department of Inorganic Chemical Technology and Environment Engineering; West Pomeranian University of Technology in Szczecin. Faculty of Civil and Environmental Engineering. Department of General Civil Engineering; West Pomeranian University of Technology in Szczecin. Faculty of Chemical Technology and Engineering. Department of Chemical Organic Technology and Polymeric Materials
    This paper presents new photocatalysts obtained by treating carbon spheres (CS) and TiO2 in a microwave reactor at a pressure of 20 atm and a temperature of up to 300 °C for 15 min and then depositing TiO2/CS composites on glass fibre cloths. Such highly CO2-adsorbing photocatalysts showed photoactivity in the simultaneous water-splitting process, generating H2, reducing CO2 to CO and CH4, and reducing N2 to NH3. In addition, calculations of the hydrogen balance involved in all reactions were performed. Adding 1 g of carbon spheres per 1 g of TiO2 maintained the high selectivity of nitrogen fixation at 95.87–99.5%, which was continuously removed from the gas phase into the water as NH4+ ions.
  • PozycjaOpen Access
    The influence of the addition of carbon spheres on photoactivity of TiO2 and ZnO in CO2 reduction process
    (Elsevier, 2023-09-09) Morawski, Antoni W.; Ćmielewska, Katarzyna; Kusiak-Nejman, Ewelina; Staciwa, Piotr; Kapica-Kozar, Joanna; Ekiert, Ewa; Pełech, Iwona; Narkiewicz, Urszula; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej. Katedra Technologii Chemicznej Nieorganicznej i Inżynierii Środowiska; West Pomeranian University of Technology in Szczecin. Faculty of Chemical Technology and Engineering. Department of Inorganic Chemical Technology and Environment Engineering
    The development of an effective photocatalyst for CO2 reduction is currently being addressed by many scientists. This study concerns the influence of the addition of carbon spheres (CS) on photoactivity of TiO2 and ZnO. The photocatalysts were tested in a liquid phase system in an alkaline environment. The suspensions of the tested materials were irradiated with UV–Vis light for 6 h. Then, the amount of the obtained products in the gas phase was analysed by gas chromatography. The identified products of CO2 photoreduction were hydrogen, carbon monoxide, and methane. Based on the results, it was found that CS/TiO2 and CS/ZnO showed similar activity in carbon dioxide reduction processes, however, more product amounts were obtained in experiments with the use of CS/TiO2 materials. The addition of carbon spheres to titanium dioxide improved its activity in carbon monoxide production. The maximum photoactivity of CS/TiO2 was observed for the addition of 0.1 g of CS. On the other hand, in the case of CS/ZnO materials, carbon spheres did not positively affect their performance. Nevertheless, their activity increased with the CS amount.
  • PozycjaOpen Access
    The influence of the synthesis pH on the morphology and adsorption properties of carbon spheres
    (Elsevier, 2023-07-13) Sobczuk, Konrad S.; Pełech, Iwona; Narkiewicz, Urszula; Staciwa, Piotr; Sibera, Daniel; Moszyński, Dariusz; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering; Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering
    Microporous spherical carbon materials were obtained from the resorcinol–formaldehyde resin, treated in a solvothermal reactor heated with microwaves, and then subjected to carbonization. The effect of the pH on the changes in the carbon spheres' morphology and the adsorption performance was investigated. In order to improve the adsorption efficiency, carbon spheres were subjected to the activation using potassium hydroxide and their properties were compared to those of the non-activated ones. The adsorption performance of the produced materials was evaluated in detail by examining nitrogen and carbon dioxide adsorption from the gas phase, the morphology – using Scanning Electron Microscopy, and surface chemistry – using X-ray Photoelectron Spectroscopy.
  • PozycjaOpen Access
    CO2 Adsorption Study of Potassium‐Based Activation of Carbon Spheres
    (MDPI, 2022-07-05) Pełech, Iwona; Staciwa, Piotr; Sibera, Daniel; Pełech, Robert; Sobczuk, Konrad S.; Kayalar, Gulsen Yagmur; Narkiewicz, Urszula; Cormia, Robert; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Department of Chemical Engineering, Faculty of Engineering, Eskişehir Technical University, 26555 Eskişehir, Turkey; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Chemistry Faculty, Chemistry Department, Foothill College
    The adsorption properties of microporous spherical carbon materials obtained from the resorcinol-formaldehyde resin, treated in a solvothermal reactor heated with microwaves and then subjected to carbonization, are presented. The potassium-based activation of carbon spheres was carried out in two ways: solution-based and solid-based methods. The effect of various factors, such as chemical agent selection, chemical activating agent content, and the temperature or time of activation, was investigated. The influence of microwave treatment on the adsorption properties was also investigated and described. The adsorption performance of carbon spheres was evaluated in detail by examining CO2 adsorption from the gas phase.
  • PozycjaOpen Access
    Pressureless and Low-Pressure Synthesis of Microporous Carbon Spheres Applied to CO2 Adsorption
    (MDPI, 2020-10-13) Pełech, Iwona; Sibera, Daniel; Staciwa, Piotr; Narkiewicz, Urszula; Cormia, Robert; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Chemistry Faculty, Chemistry Department, Foothill College
    In this work, low-pressure synthesis of carbon spheres from resorcinol and formaldehyde using an autoclave is presented. The influence of reaction time and process temperature as well as the e ect of potassium oxalate, an activator, on the morphology and CO2 adsorption properties was studied. The properties of materials produced at pressureless (atmospheric) conditions were compared with those synthesized under higher pressures. The results of this work show that enhanced pressure treatment is not necessary to produce high-quality carbon spheres, and the morphology and porosity of the spheres produced without an activation step at pressureless conditions are not significantly di erent from those obtained at higher pressures. In addition, CO2 uptake was not a ected by elevated pressure synthesis. It was also demonstrated that addition of the activator (potassium oxalate) had much more e ect on key properties than the applied pressure treatment. The use of potassium oxalate as an activator caused non-uniform size distribution of spherical particles. Simultaneously higher values of surface area and total pore volumes were reached. A pressure treatment of the carbon materials in the autoclave significantly enhanced the CO2 uptake at 25 C, but had no e ect on it at 0 C.
  • PozycjaEmbargo
    Effect of microwave assisted solvothermal process parameters on carbon dioxide adsorption properties of microporous carbon materials
    (Elsevier, 2020-08-02) Staciwa, Piotr; Sibera, Daniel; Pełech, Iwona; Narkiewicz, Urszula; Lojkowski, Witold; Dąbrowska, Sylwia; Cormia, Robert; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydział Technologii i Inżynierii Chemicznej; Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin; Instytut Wysokich Ciśnień Polskiej Akademii Nauk; Institute of High Pressure Physics, Polish Academy of Science; Politechnika Warszawska. Wydział Inżynierii Materiałowej; Faculty of Materials Science and Engineering, Warsaw University of Technology; Chemistry Faculty, Chemistry Department, Foothill College
    In this work, production and characterization of carbon spheres from resorcinol and formaldehyde, using a microwave assisted solvothermal reactor, is presented. The influence of different experimental conditions, e.g., reaction time, pressure, and power, on the structure of the obtained materials, and carbon dioxide adsorption properties, was studied. Using the method described in this work, it is possible to significantly reduce the reaction time, to as low as 10 min, compared with widely described processes carried out in autoclaves, requiring several hours. Simultaneously, it was discovered that the application of higher reactor pressures, over 3 MPa, resulted in the destruction of spherical shape and the formation of graphitic layers. The importance of micropores below 0.4 nm, for adsorption of carbon dioxide, was also shown in this work. Microporous carbon spheres with efficient CO2 adsorption properties (nearly 7 mmol/g at 1 bar and 0 ◦C) were synthesized using this process.
  • PozycjaOpen Access
    CO2 Sorbents Based on Spherical Carbon and Photoactive Metal Oxides: Insight into Adsorption Capacity, Selectivity and Regenerability
    (MDPI, 2022-10-11) Pełech, Iwona; Kusiak-Nejman, Ewelina; Staciwa, Piotr; Sibera, Daniel; Kapica‐Kozar, Joanna; Wanag, Agnieszka; Latzke, Filip; Pawłowska, Karolina; Michalska, Adrianna; Narkiewicz, Urszula; Morawski, Antoni W.
  • PozycjaOpen Access
    Magnetic Resonance Studies of Hybrid Nanocomposites Containing Nanocrystalline TiO2 and Graphene-Related Materials
    (MDPI, 2022-03-18) Guskos, Niko; Żołnierkiewicz, Grzegorz; Kusiak-Nejman, Ewelina; Guskos, Aleksander; Aidinis, Konstantinos; Bobrowska, Marta; Berczyński, Paweł; Wanag, Agnieszka; Pełech, Iwona; Narkiewicz, Urszula; Morawski, Antoni Waldemar
    Nanocomposites based on nanocrystalline titania modified with graphene-related materials (reduced and oxidized form of graphene) showed the existence of magnetic agglomerates. All parameters of magnetic resonance spectra strongly depended on the materials’ modification processes. The reduction of graphene oxide significantly increased the number of magnetic moments, which caused crucial changes in the reorientation and relaxation processes. At room temperature, a wide resonance line dominated for all nanocomposites studied and in some cases, a narrow resonance line derived from the conduction electrons. Some nanocomposites (samples of titania modified with graphene oxide, prepared with the addition of water or butan-1-ol) showed a single domain magnetic (ferromagnetic) arrangement, and others (samples of titania modified with reduced graphene oxide) exhibited magnetic anisotropy. In addition, the spectra of EPR from free radicals were observed for all samples at the temperature of 4 K. The magnetic resonance imaging methods enable the capturing of even a small number of localized magnetic moments, which significantly affects the physicochemical properties of the materials.
  • PozycjaOpen Access
    New Insight on Carbon Dioxide–Mediated Hydrogen Production
    (Chemistry Europe, 2022-04-03) Morawski, Antoni Waldemar; Kusiak-Nejman, Ewelina; Pełech, Iwona; Ćmielewska, Katarzyna; Sibera, Daniel; Staciwa, Piotr; Wanag, Agnieszka; Gano, Marcin; Ekiert, Ewa; Kapica‐Kozar, Joanna; Witkowski, Kordian; Narkiewicz, Urszula
    A new approach to hydrogen production from water is described. This simple method is based on carbon dioxide-mediated water decomposition under UV radiation. The water contained dissolved sodium hydroxide, and the solution was saturated with gaseous carbon dioxide. During saturation, the pH decreased from about 11.5 to 7–8. The formed bicarbonate and carbonate ions acted as scavengers for hydroxyl radicals, preventing the recombination of hydroxyl and hydrogen radicals and prioritizing hydrogen gas formation. In the presented method, not yet reported in the literature, hydrogen production is combined with carbon dioxide. For the best system with alkaline water (0.2 m NaOH) saturated with CO2 under UV-C, the hydrogen production amounted to 0.6 μmol h−1 during 24 h of radiation.
  • PozycjaOpen Access
    Effective green ammonia synthesis from gaseous nitrogen and CO2 saturated-water vapour utilizing a novel photocatalytic reactor
    (ScienceDirect, 2022-10-15) Morawski, Antoni Waldemar; Ćmielewska, Katarzyna; Ekiert, Ewa; Kusiak‐Nejman, Ewelina; Pełech, Iwona; Staciwa, Piotr; Sibera, Daniel; Wanag, Agnieszka; Kapica‐Kozar, Joanna; Gano, Marcin; Lendzion-Bieluń, Zofia; Narkiewicz, Urszula
    The ammonia synthesis from nitrogen and hydrogen derived from water vapor in the photocatalytic process performed under mild conditions is presented. A new solution of a gas-phase photocatalytic reactor with the bed in the form of a UV transparent glass fiber cloth coated with AEROXIDE® P25 TiO2 was applied. The bed in the reactor is located just above the water surface. The gases circulate from above towards the water surface, where the produced ammonia is easily absorbed and continuously separated from the gas phase, shifting the ammonia synthesis equilibrium towards the product. The highest amount of ammonia (about 1.3 mmol NH4+/g TiO2 after 6 h) was obtained at 20 °C, and with the use of the gaseous mixture containing CO2 (15%), N2 (85%), and water vapour derived from water located at the bottom of the reactor. Carbon dioxide in the reaction environment is simultaneously reduced to carbon monoxide and methane.
  • PozycjaOpen Access
    CO2 Reduction to Valuable Chemicals on TiO2-Carbon Photocatalysts Deposited on Silica Cloth
    (MDPI, 2021-12-28) Morawski, Antoni Waldemar; Ćmielewska, Katarzyna; Witkowski, Kordian; Kusiak-Nejman, Ewelina; Pełech, Iwona; Staciwa, Piotr; Ekiert, Ewa; Sibera, Daniel; Wanag, Agnieszka; Gano, Marcin; Narkiewicz, Urszula
    A new photocatalyst for CO2 reduction has been presented. The photocatalyst was prepared from a combination of a commercial P25 with a mesopore structure and carbon spheres with a microporous structure with high CO2 adsorption capacity. Then, the obtained hybrid TiO2-carbon sphere photocatalysts were deposited on a glass fiber fabric. The combined TiO2-carbon spheres/silica cloth photocatalysts showed higher efficiency in the two-electron CO2 reduction towards CO than in the eight-electron reaction to methane. The 0.5 g graphitic carbon spheres combined with 1 g of TiO2 P25 resulted in almost 100% selectivity to CO. From a practical point of view, this is promising as it economically eliminates the need to separate CO from the gas mixture after the reaction, which also contains CH4 and H2.
  • PozycjaOpen Access
    The Effect of the Modification of Carbon Spheres with ZnCl2 on the Adsorption Properties towards CO2
    (MDPI, 2022-02-18) Pełech, Iwona; Staciwa, Piotr; Sibera, Daniel; Kusiak‐Nejman, Ewelina; Morawski, Antoni W.; Kapica‐Kozar, Joanna; Narkiewicz, Urszula
    Zinc chloride and potassium oxalate are often applied as activating agents for carbon materials. In this work, we present the preparation of ZnO/carbon spheres composites using resorcinol-formaldehyde resin as a carbon source in a solvothermal reactor heated with microwaves. Zinc chloride as a zinc oxide source and potassium oxalate as an activating agent were applied. The effect of their addition and preparation conditions on the adsorption properties towards carbon dioxide at 0 °C and 25 °C were investigated. Additionally, for all tested sorbents, the CO2 sorption tests at 40 °C, carried out utilizing a thermobalance, confirmed the trend of sorption capacity measured at 0 and 25 °C. Furthermore, the sample activated using potassium oxalate and modified using zinc chloride (a carbon-to-zinc ratio equal to 10:1) displayed not only a high CO2 adsorption capacity (2.69 mmol CO2/g at 40 °C) but also exhibited a stable performance during the consecutive multicycle adsorption–desorption process.
  • PozycjaOpen Access
    Bottom up approach of metal assisted electrochemical exfoliation of boron towards borophene
    (Springer Nature, 2022-09-20) Sielicki, Krzysztof; Maślana, Klaudia; Chen, Xuecheng; Mijowska, Ewa; Faculty of Chemical Technology and Engineering, Nanomaterials Physicochemistry Department, West Pomeranian University of Technology, Piastow Ave. 42, 71-065, Szczecin, Poland
    Electrochemical exfoliation of nonconductive boron to few-layered borophene is reported. This unique effect is achieved via the incorporation of bulk boron into metal mesh inducing electrical conductivity and opening a venue for borophene fabrication via this feasible strategy. The experiments were conducted in various electrolytes providing a powerful tool to fabricate borophene flakes with a thickness of ~ 3–6 nm with different phases. The mechanism of electrochemical exfoliation of boron is also revealed and discussed. Therefore, the proposed methodology can serve as a new tool for bulk scale fabrication of few-layered borophene and speed up the development of borophene-related research and its potential application.