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I’m not promising the moon,
I’m not promising a rainbow,

... Just a practical solution

— Sting & Rob Mathes

P R E FA C E

This monograph presents selected results of several years of work the author conducted
at the Technical University of Szczecin (now West Pomeranian University of Technol-
ogy, Szczecin) and the Technische Universität Ilmenau. The monograph consists of five
chapters and describes some methods applicable in the analysis of selected problems
of the electromagnetic field.

The first two chapters of monograph have been written to Recall memory of my
friend Modest Gramz. Thus, these chapters have more or less historical character.

Chapter 1 is devoted to the finite element method. It does not describe the method
itself but presents only some shape functions which can be used in the FEM, namely,
vector shape functions for brick finite elements. Nodal, edge, and face implementations
are discussed in details.

Chapter 2 presents an analysis of a general 3D magnetostatic field problem using
the finite element method with various magnetic field formulations. The analysis by
means of scalar potentials together with modeling of 3D windings is described at first.
Next, magnetic field descriptions using the magnetic vector potential A and the direct
H formulation are discussed. Their implementations in the FEM with separated A/H
components using edge finite elements are also shown.

Chapter 3 deals with a problem of reconstruction of the interface between two os-
cillating electrically conducting immiscible fluids through which flows direct current.
Using the magnetic tomography concept the system based on magnetic field measure-
ments around the cell with fluids has been developed for the interface identification.
In the chapter, first, the methods for calculation of the magnetic field outside the cell
are described. Then, some algorithms for an identification of the dominant mode in
the oscillating interface are presented, namely, simple genetic algorithm, direct search
technique, and cross-correlation approach.

Chapter 4 describes analytical methods suitable for modeling Lorentz eddy current
testing (LET) problems. The chapter presents 2D and 3D LET models for which calcu-
lation of Lorentz forces, defect response signals, and modeling of permanent magnets
are analyzed.

The last chapter, Chapter 5, is dedicated to the 3D visualization of objects and scalar
and vector fields which is an important element of any numerical/analytical 3D simu-
lation.
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1
V E C T O R S H A P E F U N C T I O N S

1.1. introduction

In the finite element method (FEM) , choice of shape functions which are used for
description of the behavior of the electromagnetic field in a finite element, strongly
affects the process of solving the analyzed boundary value problem [52]. For scalar
problems, an approximation of unknown field function (scalar potential) is usually
limited to a specification of the order of polynomial defining shape functions in a finite
element. For vector problems, however, the following important properties should be
also taken into account:

• the continuity of tangential (or normal) components of the approximate vector
field on common faces of adjacent finite elements,

• the continuity of normal (or tangential) components of the curl of the approxi-
mate vector field on borders between finite elements,

• zero divergence (or zero curl) of the approximate vector field inside finite ele-
ments.

The above properties (or the lack of them) have a strong influence on the applicability
of specific boundary value formulations used in 3D magnetostatic problems as well as
in 3D quasi-static eddy-current problems.

The goal of this chapter is to present three types of the vector field approximation
using brick finite elements as a simple example. According to [12], the following terms
(related to finite element geometric parts such as nodes, edges, and faces) will be used
to describe the analyzed approximation, namely: nodal, edge, and facet approximation.
For each type of approximation, finite element matrices used in the FEM will be deter-
mined. They can be directly applied to various problems of technical electrodynamics.

1.2. sample vector problem of technical electrodynamics

To avoid unnecessary repetitions in the further analysis of various vector formulations,
a general boundary value problem (GBVP) of electrodynamics is defined.

First, the vector function F is introduced. It can be interpreted as one of the following
electromagnetic fields: the electric/magnetic field intensity E/H, the electric/magnetic

1
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flux density D/B, the electric current density J, or the magnetic/electric vector poten-
tial A/T.

Then, the vector GBVP (static, quasi-static) is defined as follows: in a certain region
Ω is seeking to vector function F. The function F satisfies the equation:

∇× (ν∇× F)− κ∇(ν∇ · F) + βF = Q (1.1)

and the appropriate boundary conditions:

ν∇× F× n = P and κn · F = p, on ΓP (1.2)

n× F = D and ν∇ · F = q, on ΓD (1.3)

where ΓP and ΓD are non-overlapping parts of boundary Γ of the analyzed region Ω;
Q, P; D are given vector functions; p, q are known scalar functions; coefficients ν, κ, β
depend on material parameters and type of the problem (static, quasi-static).

Applying Galerkin’s method, the following equivalent integral formulation can be
obtained:∫

Ω
ν(∇×w) · (∇× F)dΩ + κ

∫
Ω

ν(∇ ·w)(∇ · F)dΩ + β
∫

Ω
w · FdΩ =

=
∫

Ω
w ·QdΩ +

∫
ΓP

w · PdΓ + κ
∫

ΓP

qw · ndΓ (1.4)

The vector test function w in (1.4) has to satisfy homogeneous principal boundary
conditions:

κw · n = 0 on ΓP (1.5)

n×w = 0 on ΓD (1.6)

Non-homogeneous boundary conditions (1.2) and (1.3) have to be fulfilled similarly as
for scalar problems [51].

In order to solve (1.4) by means of the finite element method, it is necessary to
determine finite element matrices for actually used approximation of the vector field F.
The vector field F in any finite element is approximated using vector shape functions
wk = wk1k, k = 1 . . . K as:

F̃ =
K

∑
k=1

Fkwk =
K

∑
k=1

Fkwk1k (1.7)

where coefficients Fk can be interpreted as the components of F at selected points of the
finite element (nodes, middle of element edges, or faces), 1k are local unit vectors, and
K is equal to the number of selected points. Substituting (1.7) into (1.4), the following
set of algebraic equations is obtained:

[S]{F̃} = {R} (1.8)

where [S] is the global stiffness matrix and {R} is the load vector.
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Assuming that coefficients ν, κ and β are constant inside finite elements, the global
stiffness matrix [S] can be constructed as a sum of the following matrices:

[S] = ν[E] + κν[G] + β[H] (1.9)

with elements Dkn, Ekn, and Gkn calculated as volume integrals over the appropriate
finite element:

Ekn =
∫

Ωe
(∇×wk) · (∇×wn)dΩ (1.10)

Gkn =
∫

Ωe
(∇ ·wk)(∇ ·wn)dΩ (1.11)

Hkn =
∫

Ωe
wk ·wndΩ (1.12)

The right hand side vector {R} of the global system (1.8) is obtained using source
terms from (1.1) - (1.3) and the corresponding integrals in (1.4). Under the assumption
that the functions Q, P and q are constant in the considered finite element, elements of
the load vector {R} can be calculated as:

Rk = Qk

∫
Ωe

wkdΩ + Pk

∫
Γe

P

wkdΓ + qκnk

∫
Γe

D

wkdΓ (1.13)

where Qk = Q · 1k, Pk = P · 1k, nk = n · 1k, and Γe
P, Γe

D are element parts belonging to
the boundary ΓP or ΓD, respectively. In next sections, the above matrices for the brick
finite element using nodal and edge approximations will be presented in details.

1.3. the brick finite element

The first order brick finite element is a special type of 8-node isoparametric finite
elements where the element edges are parallel to the axes of global coordinate system.
The analysis presented here is restricted to the brick elements because of problems with
a construction of general isoparametric finite elements having the properties described
in Section 1.1.. In the paper [129], the author has tried to define such general elements
but the assumptions which he has used are in fact fulfilled only for the brick element.
Tetrahedral elements with various approximations of vector fields have been already
described in [8, 12, 13, 97].

The normalized brick finite element to be analyzed is shown in Fig. 1.1. It is assumed
that the axes of the local coordinate system (ξ, η, ζ) are parallel to the axes of the global
coordinate system (x, y, z). In that case, the local coordinate system is given as:

(ξ, η, ζ) =
(

2
lx (x− xm) , 2

ly (y− ym) , 2
lz (z− zm)

)
(1.14)
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Fig. 1.1: Normalized brick element with node and edge numbering scheme

where xm, ym, zm are coordinates of the center of gravity of the analyzed element and
lx, ly, lz are lengths of element edges, respectively. Additionally, the following auxiliary
parameters are introduced:

α1x = 1
2 (1− ξ) , α2x = 1

2 (1 + ξ) ,

α1y = 1
2 (1− η) , α2y = 1

2 (1 + η) ,

α1z =
1
2 (1− ζ) , α2z =

1
2 (1 + ζ) (1.15)

The classical 3D nodal shape functions for the brick finite element are given as:

N1 = α1xα1yα1z, N5 = α1xα1yα2z,

N2 = α2xα1yα1z, N6 = α2xα1yα2z,

N3 = α2xα2yα1z, N7 = α2xα2yα2z,

N4 = α1xα2yα1z, N8 = α1xα2yα2z (1.16)

Two additional types of shape functions can be introduced for the brick finite ele-
ment, namely, edge shape functions:

Ne
1 = Ne

1x = α1yα1z, Ne
7 = Ne

3y = α2xα2z,

Ne
2 = Ne

2x = α2yα1z, Ne
8 = Ne

4y = α2xα1z,

Ne
3 = Ne

3x = α2yα2z, Ne
9 = Ne

1z = α1xα1y,

Ne
4 = Ne

4x = α1yα2z, Ne
10 = Ne

2z = α2xα1y,

Ne
5 = Ne

1y = α1xα1z, Ne
11 = Ne

3z = α2xα2y,

Ne
6 = Ne

2y = α1xα2z, Ne
12 = Ne

4z = α1xα2y (1.17)
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and facet shape functions:

N f
1 = α1x, N f

3 = α1y, N f
5 = α1z,

N f
2 = α2x, N f

4 = α2y, N f
6 = α2z (1.18)

The relationships between above shape functions and their derivatives are presented
in Table 1.1.

Table 1.1: Shape functions and their derivatives

Node

lx
∂

∂x ly ∂
∂y lz ∂

∂z

N1 −Ne
1 −Ne

5 −Ne
9

N2 Ne
1 −Ne

8 −Ne
10

N3 Ne
2 Ne

8 −Ne
11

N4 −Ne
2 Ne

5 −Ne
12

N5 −Ne
4 −Ne

6 Ne
9

N6 Ne
4 −Ne

7 Ne
10

N7 Ne
3 Ne

7 Ne
11

N8 −Ne
3 Ne

6 Ne
12

Face

lx
∂

∂x ly ∂
∂y lz ∂

∂z

N f
1 −1 0 0

N f
2 1 0 0

N f
3 0 −1 0

N f
4 0 1 0

N f
5 0 0 −1

N f
6 0 0 1

Edge

lx
∂

∂x ly ∂
∂y lz ∂

∂z

Ne
1 = Ne

1x 0 −N f
5 −N f

3

Ne
2 = Ne

2x 0 N f
5 −N f

4

Ne
3 = Ne

3x 0 N f
6 N f

4

Ne
4 = Ne

4x 0 −N f
6 N f

3

Ne
5 = Ne

1y −N f
5 0 −N f

1

Ne
6 = Ne

2y −N f
6 0 N f

1

Ne
7 = Ne

3y N f
6 0 N f

2

Ne
8 = Ne

4y N f
5 0 −N f

2

Ne
9 = Ne

1z −N f
3 −N f

1 0

Ne
10 = Ne

2z N f
3 −N f

2 0

Ne
11 = Ne

3z N f
4 N f

2 0

Ne
12 = Ne

4z −N f
4 N f

1 0

1.4. vector shape functions - nodal realization

The most popular approach in the finite element method to problems described by
vector field functions is the independent approximation of every global vector field
component by means of the classic 3D nodal shape functions (1.16) (nodal approxima-
tion). As a global vector field component, we understand the component received from
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the projection of the vector field on one of the axes of the global Cartesian coordinate
system. It should be noted that in the paper [28], the authors have proposed the approx-
imation using local vector components (components which are covariant with respect
to the local coordinate system received from the isoparametric transformation) but the
realization of their approach is very complicated and therefore it is not considered in
this work. According to the previously formulated assumptions (Section 1.1.), the first
order vector shape functions for the brick finite elements are defined using the bi-linear
form of shape functions (1.16). In this case, the respective test functions (1.7) take the
following form:

wk =


Nk1x k = 1, . . . , 8

Nk−81y k = 9, . . . , 16

Nk−161z k = 17, . . . , 24

(1.19)

with the coefficients Fk defined as:

Fk =


Fx

k k = 1, . . . , 8

Fy
k−8 k = 9, . . . , 16

Fz
k−16 k = 17, . . . , 24

(1.20)

Figure 1.2 shows the nodal vector shape functions in a normalized brick element
related to the corresponding element node. The shape functions are visualized as com-
bined vectors wk + wk+8 + wk+16, k = 1, . . . , 8, where k denotes the node index.

The nodal approximation of the vector field F has the following properties:

• all components of the approximate vector function F̃ are continuous on faces of
adjacent elements,

• the normal component of the curl of F̃ (∇× F̃) is continuous on faces of adjacent
elements in contrast to its tangential components which are discontinuous,

• the divergence ∇ · F̃ is not equal to 0 inside finite elements except for the case
where components Fk (k = x,y,z) are constant with respect to the appropriate
coordinates.



Fig. 1.2: Nodal approximation - vector shape functions in a normalized brick element visualized
as combined vectors: wk + wk+8 + wk+16, k = 1, . . . , 8
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Elements of the stiffness matrix [S] are calculated according to (1.9), with the ele-
ments (1.10) - (1.12) of [E], [G], and [H] expressed as follows:

Ekn =



d1 Ay,k,n + d2 Az,k,n k = 1 . . . 8; n = 1 . . . 8

−d6Bxy,(n−8),k k = 1 . . . 8; n = 9 . . . 16

−d5Bxz,(n−16),k k = 1 . . . 8; n = 17 . . . 24

−d6Bxy,(k−8),n k = 9 . . . 16; n = 1 . . . 8

d3 Ax,(k−8),(n−8)+

+d2 Az,(k−8),(n−8) k = 9 . . . 16; n = 9 . . . 16

−d4Byz,(n−16),(k−8) k = 9 . . . 16; n = 17 . . . 24

−d5Bxz,(k−16),n k = 17 . . . 24; n = 1 . . . 8

−d4Byz,(k−16),(n−8) k = 17 . . . 24; n = 9 . . . 16

d3 Ax,(k−16),(n−16)+

+d1 Ay,(k−16),(n−16) k = 17 . . . 24; n = 17 . . . 24

(1.21)

Gkn =



d3 Ax,k,n k = 1 . . . 8; n = 1 . . . 8

d6Bxy,k,(n−8) k = 1 . . . 8; n = 9 . . . 16

d5Bxz,k,(n−16) k = 1 . . . 8; n = 17 . . . 24

d6Bxy,n,(k−8) k = 9 . . . 16; n = 1 . . . 8

d2 Ay,(k−8),(n−8) k = 9 . . . 16; n = 9 . . . 16

d4Byz,(k−8),(n−16) k = 9 . . . 16; n = 17 . . . 24

d5Bxz,n,(k−16) k = 17 . . . 24; n = 1 . . . 8

d4Byz,(n−8),(k−16) k = 17 . . . 24; n = 9 . . . 16

d1 Az,(k−16),(n−16) k = 17 . . . 24; n = 17 . . . 24

(1.22)

Hkn =



d7Ck,n k = 1 . . . 8; n = 1 . . . 8

0 k = 1 . . . 8; n = 9 . . . 16

0 k = 1 . . . 8; n = 17 . . . 24

0 k = 9 . . . 16; n = 1 . . . 8

d7C(k−8),(n−8) k = 9 . . . 16; n = 9 . . . 16

0 k = 9 . . . 16; n = 17 . . . 24

0 k = 17 . . . 24; n = 1 . . . 8

0 k = 17 . . . 24; n = 9 . . . 16

d7C(k−16),(n−16) k = 17 . . . 24; n = 17 . . . 24

(1.23)
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where constants di are defined as

d1 =
lxlz
36ly

, d2 =
lxly
36lz

, d3 =
lylz
36lz

, d4 =
lx

24
, d5 =

ly
24

, d6 =
lz
24

, d7 =
lxlylz
216

and the elements Ax,i,j, Ay,i,j, Az,i,j, Bxy,i,j, Bxz,i,j, Byz,i,j, Ci,j are given as the following ma-
trices

[Ax,i,j] =



4 −4 −2 2 2 −2 −1 1

4 2 −2 −2 2 1 −1

4 −4 −1 1 2 −2

4 1 −1 −2 2

4 −4 −2 2

4 2 −2

4 −4

sym 4


(1.24)

[Ay,i,j] =



4 2 −2 −4 2 1 −1 −2

4 −4 −2 1 2 −2 −1

4 2 −1 −2 2 1

4 −2 −1 1 2

4 2 −2 −4

4 −4 −2

4 2

sym 4


(1.25)

[Az,i,j] =



4 2 1 2 −4 −2 −1 −2

4 2 1 −2 −4 −2 −1

4 2 −1 −2 −4 −2

4 −2 −1 −2 −4

4 2 1 2

4 2 1

4 2

sym 4


(1.26)
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[Bxy,i,j] =



2 2 −2 −2 1 1 −1 −1

−2 −2 2 2 −1 −1 1 1

−2 −2 2 2 −1 −1 1 1

2 2 −2 −2 1 1 −1 −1

1 1 −1 −1 2 2 −2 −2

−1 −1 1 1 −2 −2 2 2

−1 −1 1 1 −2 −2 2 2

1 1 −1 −1 2 2 −2 −2


(1.27)

[Bxz,i,j] =



2 2 1 1 −2 −2 −1 −1

−2 −2 −1 −1 2 2 1 1

−1 −1 −2 −2 1 1 2 2

1 1 2 2 −1 −1 −2 −2

2 2 1 1 −2 −2 −1 −1

−2 −2 −1 −1 2 2 1 1

−1 −1 −2 −2 1 1 2 2

1 1 2 2 −1 −1 −2 −2


(1.28)

[Byz,i,j] =



2 1 1 2 −2 −1 −1 −2

1 2 2 1 −1 −2 −2 −1

−1 −2 −2 −1 1 2 2 1

−2 −1 −1 −2 2 1 2 2

2 1 1 2 −2 −1 −1 −2

1 2 2 1 −1 −2 −2 −1

−1 −2 −2 −1 1 2 2 1

−2 −1 −1 −2 2 1 2 2


(1.29)

[Ci,j] =



8 4 2 4 4 2 1 2

8 4 2 2 4 2 1

8 4 1 2 4 2

8 2 1 2 4

8 4 2 4

8 4 2

8 4

sym 8


(1.30)
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Integrals used for the calculation of right hand side vector elements Rk (1.13) are
equal respectively:∫

Ωe
NidΩ =

Ve

8
,

∫
Γe

NidΓ =
Se

4
(1.31)

where Ve denotes the volume of the corresponding finite element and Se is the area of
the appropriate element face.

1.5. vector shape functions - edge approximation

The edge approximation introduced to electromagnetic field calculations in the paper
[13] can be implemented using tetrahedral elements [8, 10, 11, 97, 131] as well as brick
elements. Linear edge shape functions for the brick finite element shown in Fig. 1.1
have the following form:

wk = Ne
k 1k, k = 1 . . . 12 (1.32)

where Ne
k is given by (1.17) and unit vectors 1k are defined as:

1k =


1x k = 1 . . . 4

1y k = 5 . . . 8

1z k = 9 . . . 12

(1.33)

The coefficient Fk in (1.7) is the projection of the vector field F on the brick edge k
at its center. Figure 1.3 shows the edge shape functions attached to the corresponding
element edge in the normalized brick element.

The approximation of the vector field F by means of edge shape functions has the
following properties:

• the tangential components of F̃ on common faces of adjacent finite elements are
continuous whereas normal components are discontinuous (except for the case
where the function F is constant in the normal direction to the considered face),

• the normal component of the curl of F̃ (∇× F̃) is continuous on faces of adjacent
finite elements while the tangential components of curl are discontinuous,

• the divergence ∇ · F̃ equals zero inside brick finite elements.

The above features of the edge approximation cause that edge elements are particularly
interesting in the calculation of electromagnetic fields. Since the edge approximation
satisfies the condition ∇ · F̃ = 0, it can be assumed κ = 0 in the general boundary
problem (Section 1.2.), which considerably simplifies the equation (1.1) and the corre-
sponding boundary conditions as well.



Fig. 1.3: Edge approximation - vector shape functions in a normalized brick element
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The continuity of tangential components of the approximate vector field F̃ and the
normal components of its curl, and at the same time, discontinuity of the remaining
components is beneficial because it allows the FEM easily integrating materials hetero-
geneity in the domain under consideration. It should be noted that the continuity of all
components of the vector field F̃, which was the characteristic feature of nodal aproxi-
mation, limits the possibilities. This is also one of the reasons of a growing popularity
of edge approximation.

Elements (1.10) - (1.12) of [E], [G], and [H] for the edge approximation have the
following form:

Ekn =



e1 Ak,n + e2Bk,n k = 1 . . . 4; n = 1 . . . 4

−e6Ck,(n−4) k = 1 . . . 4; n = 5 . . . 8

−e5C(n−8),k k = 1 . . . 4; n = 9 . . . 12

−e6Cn,(k−4) k = 5 . . . 8; n = 1 . . . 4

e2 A(k−4),(n−4) + e3B(k−4),(n−4) k = 5 . . . 8; n = 5 . . . 8

−e4C(k−4),(n−8) k = 5 . . . 8; n = 9 . . . 12

−e5C(k−8),n k = 9 . . . 12; n = 1 . . . 4

−e4C(n−4),(k−8) k = 9 . . . 12; n = 5 . . . 8

e3 A(k−8),(n−8) + e1B(k−8),(n−8) k = 9 . . . 12; n = 9 . . . 12

(1.34)

Gkn = 0 (1.35)

Hkn =



e7Dk,n k = 1 . . . 4; n = 1 . . . 4

0 k = 1 . . . 4; n = 5 . . . 8

0 k = 1 . . . 4; n = 9 . . . 12

0 k = 5 . . . 8; n = 1 . . . 4

e7D(k−4),(n−4) k = 5 . . . 8; n = 5 . . . 8

0 k = 5 . . . 8; n = 9 . . . 12

0 k = 9 . . . 12; n = 1 . . . 4

0 k = 9 . . . 12; n = 5 . . . 8

e7 A(k−8),(n−8) k = 9 . . . 12; n = 9 . . . 12

(1.36)

where constants ei are defined as

e1 =
lxlz
6ly

, e2 =
lxly
6lz

, e3 =
lylz
6lz

,

e4 =
lx

6
, e5 =

ly
6

, e6 =
lz
6

, e7 =
lxlylz

36
(1.37)
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and the elements Ai,j, Bi,j, Ci,j, Di,j are described by the matrices

[Ai,j] =


2 −2 −1 1

2 1 −1

2 −2

sym 2

 , [Bi,j] =


2 1 −1 −2

2 −2 −1

2 1

sym 2

 ,

[Ci,j] =


2 1 −1 −2

−2 −1 1 2

−1 −2 2 1

1 2 −2 −1

 , [Di,j] =


4 2 1 2

4 2 1

4 2

sym 4

 (1.38)

Elements Rk of the load vector in (1.13) are calculated using the following integrals:∫
Ωe

NidΩ =
Ve

4
,

∫
Γe

NidΓ =
Se

2
(1.39)

where Ve denotes the volume of the corresponding finite element and Se is the area of
the appropriate element face.

1.6. vector shape functions - facet approximation

The first order facet approximation for the brick finite element shown in Fig. 1.1 is in-
troduced using facet shape functions N f

k given by (1.18). In this case, the test functions
(1.7) have the following form:

wk = N f
k 1k (1.40)

where 1k is a unit vector defined as

1k =


1x k = 1, 2

1y k = 3, 4

1z k = 5, 6

(1.41)

The coefficient Fk in (1.7) is interpreted in this approximation as a projection of the
vector field F̃ on normal located in the center of the kth brick face. Figure 1.4 presents
linear facet vector shape functions in a normalized brick element associated with the
corresponding brick face.

The facet approximation is characterized by the following properties:

• tangential components of the approximate vector field F̃ are discontinuous on
common faces of adjacent brick finite elements,

• the curl of F̃ equals zero inside brick finite elements.
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Fig. 1.4: Linear facet shape functions in a normalized brick element

The above properties show that the linear facet approximation is of little use in the
calculation of electromagnetic fields. It can not be used as a basis for the approximation
of the vector field F. However, it is worth noting that the curl of the vector field F̃ in the
edge approximation is in fact expressed by the facet shape functions. Thus, the facet
elements are an important complement to the nodal and edge approximation.

1.7. summary

In this chapter, various vector shape functions used in the 3D finite element method
applied to the technical electrodynamics are presented. At the beginning, the general
boundary value problem (including both static and quasi-static vector fields) is defined.
Then, a normalized brick finite element together with corresponding shape functions
of the first order is introduced. Using the normalized brick finite element as a sim-
ple example, three approximations of vector fields in a finite element are presented
and discussed, namely, nodal, edge and facet approximation. For the nodal and edge
approximation the complete stiffness matrices and load vectors are given. The char-
acteristic features of all approximations are also discussed showing reasons for the
popularity of edge approximation and inability to use of facet approximation in the
calculation of electromagnetic fields.





2
A N A LY S I S O F 3 D M A G N E T O S TAT I C F I E L D S

2.1. introduction

The purpose of this chapter is to compare the essential features of solutions of 3D
linear magnetostatic boundary value problems obtained by the finite element method
using the brick finite element introduced in Chapter 1. In this chapter the following
formulations for the description of the magnetic field are used:

• magnetic scalar potential ϕ or two, reduced and total, magnetic scalar potentials
ϕ− ψ,

• magnetic vector potential A,

• magnetic field intensity H.

In the next section, a general 3D magnetostatic boundary value problem is formulated.
Additionally, a simple benchmark example which is further used for comparisons of
the above formulations is introduced. For each formulation, boundary conditions and
the implementation of material heterogeneity in the considered region are explained
in details.

The magnetostatic boundary value problem is formulated in such a way that it could
also be applicable in an iterative process of fulfilling continuity conditions on bound-
aries between conducting and non-conducting regions in eddy current problems. In
addition, to explain more completely specific features of 3D magnetostatic problems,
the following issues are also discussed: (1) the formulation ϕ-ψ for a ferromagnetic
block in an external magnetic field, (2) the application of the electric vector potential
T for description of windings leading direct current, (3) calculations of the magnetic
field produced by a sample electromagnet, and (4) the formulation A-M applicable to
the analysis of nonlinear problems.

2.2. general 3d magnetostatic boundary value problem

Let Ω be a non-conductive region in 3D space surrounded by the boundary Γ. The
static magnetic intensity field H in the region Ω is described by Maxwell’s equations:

∇×H = 0, (∇×H = Js, Js = 0) (2.1)

∇ · B = 0, B = µB (2.2)

17
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where Js is a source current density in a certain region Ωs ⊂ Ω. The assumption Js = 0
does not narrow the analysis because in any case the magnetic field Hs produced by
source currents of known distribution can be calculated using the Biot-Savart law and
then included in boundary conditions. The other method of taking into account the
source field Hs is shown in Section 2.3.2.. In Section 2.3.2., the effective method of
modeling the magnetic field produced by 3D current windings using the magnetic
scalar potential ϕ and the electric vector potential T is described.

Additionally, it is assumed that the magnetic permeability µ is constant in every
part of the region Ω. To complete the definition of the boundary value problem, it is
presumed that the boundary Γ of the region Ω consists of two parts:

ΓH , with the following boundary condition:

H× n = K0 (2.3)

and ΓB, where the normal component of the magnetic flux density is defined:

n · B = Bn0 (2.4)

To illustrate problems which appear during numerical simulations of the above
boundary value problem, a simple test problem shown in Fig. 2.1 is defined. For the

z

y
x

b
a

h

c
m0

K0 K0

Fig. 2.1: Simple test problem - surface currents K0 flowing on the walls of air cavity

problem shown in Fig. 2.1 it is necessary to find the distribution of magnetic field H
produced by the surface current K0 flowing on the walls of air cavity 2a × 2b × 2h
(µ = µ0) located in an ideal ferromagnetic material (µ→ ∞).

Because of symmetry, only one eighth of the cavity region is analyzed. The following
boundary conditions are set on symmetry planes and cavity walls:

n · B = 0 for

{
x = 0, 0 6 y 6 b, 0 6 z 6 h

y = 0, 0 6 x 6 a, 0 6 z 6 h
(2.5)

H× n = K0 elsewhere (2.6)
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Surface currents K0 are defined as:

K0 =



K01y x = a, 0 6 y 6 b, 0 6 z 6 c

0 x = a, 0 6 y 6 b, c < z 6 h

−K01x y = b, 0 6 x 6 a, 0 6 z 6 c

0 y = b, 0 6 x 6 a, c < z 6 h

0 z = 0, 0 6 x 6 a, 0 6 y 6 b

0 z = h, 0 6 x 6 a, 0 6 y 6 b

(2.7)

The above problem can be solved analytically using the method of separation of vari-
ables [52]. Applying α → 0 to the solution given in [52], p. 74, components of the
magnetic field intensity H can be described by the following expressions:

Hx =
4
π

∞

∑
m=1

wmrm sin rmz
∞

∑
n=1

(−1)n+1

(2n− 1)βxmn

sinh βxmnx
cosh βxmna

cos qny (2.8)

Hy =
4
π

∞

∑
m=1

wmrm sin rmz
∞

∑
n=1

(−1)n+1

(2n− 1)βymn

sinh βymny
cosh βymnb

cos pnx (2.9)

Hz =
4
π

∞

∑
m=0

wm cos rmz
∞

∑
n=1

(−1)n+1

2n− 1
·

·
(

cosh βxmnx
cosh βxmna

cos qny +
cosh βymny
cosh βymnb

cos pnx
)

(2.10)

where

rm =
mπ

h
, qn =

(2n− 1)π
2b

, pn =
(2n− 1)π

2a
,

βxmn =
√

q2
n + r2

m, βymn =
√

p2
n + r2

m

wm =


2K0

mπ
sin(mπ

c
h
) , m 6= 0

K0
c
h

, m = 0

Results of the analytical solution (further used as the reference in comparisons of var-
ious formulations) are shown in Fig. 2.2. Calculations have been performed for the
following dimensionless parameters: a = b = h = 1, c/h = 0.6, and K0 = 0.5.
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Fig. 2.2: Magnetic field intensity H in a cubic hole, (ANA - analytical solution)

The magnetic field intensity H is calculated in a set of points Pi located on two lines
l1 and l2. Positions of points on the line lk are defined as follows:

lk : P̃i



x/a =


x̃0, i = 1 . . . Ny − 1

x̃0 + (i− 1)∆x̃, i = 1 . . . Nx − 1

x̃0 + Nx∆x̃ i = 1 . . . Ny − 1

x̃0 + (Nx − i)∆x̃, i = 1 . . . Nx − 1



y/b =


ỹ0 + (i− 1)∆ỹ, i = 1 . . . Ny − 1

ỹ0 + Ny∆ỹ, i = 1 . . . Nx − 1

ỹ0 + (Ny − i)∆ỹ, i = 1 . . . Ny − 1

ỹ0, i = 1 . . . Nx − 1



z/h =


z̃k, i = 1 . . . Ny − 1

z̃k, i = 1 . . . Nx − 1

z̃k, i = 1 . . . Ny − 1

z̃k, i = 1 . . . Nx − 1



(2.11)

where Nx, Ny are numbers of observation points along x and y axis, respectively; x̃0 =
x0/a, ỹ0 = y0/b, z̃k = zk/h; ∆x̃ = ∆x/a, ∆ỹ = ∆y/b are normalized distances between
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adjacent points. Figure 2.2 shows the results for z̃1 = 0.1 (line l1) and z̃2 = 0.7 (line l2).
Other settings, namely Nx = Ny = 5, ∆x̃ = ∆ỹ = 0.2, and x̃0 = ỹ0 = 0.1 are the same
for both lines.

Results of calculations are presented as 3D arrows located at points P̃i. The size of
arrows is proportional to the magnetic field H at the hook points P̃i. Additionally, plots
of magnetic field components H = [Hx, Hy, Hz]T against a normalized distance from
the point P̃0 = [x̃0, ỹ0, z̃k]

T calculated along the lk line are presented.

2.3. 3d analysis of magnetostatic field by means of scalar potentials

First, the boundary value problem described in Section 2.2. is solved by means of the
finite element method using the scalar potential formulation ϕ. Because the region Ω is
magnetically homogeneous and does not contain source currents it is enough to apply
only one magnetic scalar potential defined as H = −∇ϕ. The equation

∇ · (µ∇ϕ) = 0 (2.12)

results from equations (2.1) and (2.2) after substitution H = −∇ϕ. (2.12) has a unique
solution if Dirichlet/Neumann boundary conditions are set on the boundary Γ. Neu-
mann boundary condition follows directly from (2.4) and has the form:

∂ϕ

∂n
= − 1

µ
Bn0 on ΓB (2.13)

In general, it is difficult to obtain Dirichlet boundary conditions directly from equation
(2.3). In fact, they can be found if the vector function n × K0 can be expressed as a
gradient of a certain scalar function. Fortunately, in the test problem (Section 2.2.),
Dirichlet condition on boundary ΓH is obvious. If ϕ = 0 is assumed on the wall z = 0
then on walls x = 0 and y = b in the interval z ∈ (0, c), the scalar potential ϕ varies
linearly with z and takes the constant value ϕ0 on the rest part of the boundary ΓH
(ϕ0 = −cK0):

ϕ =

{
− cK0z, 0 6 z 6 c

− cK0, c 6 z 6 h

}
for x = 0 or y = b (2.14)

The solution of equation (2.12) with Dirichlet and Neumann boundary conditions (2.13)
and (2.14) by means of FEM with classical node finite elements using scalar potential
ϕ formulation is shown in Fig. 2.3. Details of a weak formulation of the problem and
an approximation of the scalar potential in a finite element as well as calculations of
element matrices are omitted because they can easily be found in the literature e.g.
[116, 147, 148].

For each component Hp of the magnetic intensity H, the normalized local error εi
k,p

at point P̃i located on line lk (2.11) is calculated as:

εi
k,p =

Hi
p,FEM − Hi

p,ANA

Hi
ANA

100%, p ∈ {x, y, z} (2.15)



22 analysis of 3d magnetostatic fields

where Hi =
√
(Hi

x)
2 + (Hi

y)
2 + (Hi

z)
2, and subscripts FEM, ANA denote fields ob-

tained from the finite element method and the reference analytical method (2.8) - (2.10),
respectively.

Normalized root mean square deviation (NRMSD) δk along the line lk is defined as:

δk =
√

δ2
k,x + δ2

k,y + δ2
k,z (2.16)

where

δk,p =

√
1
N

N
∑

i=1

(
Hi

p,FEM − Hi
p,ANA

)2

max
i=1...N

(Hi
p,ANA)− min

i=1...N
(Hi

p,ANA)
100%, p ∈ {x, y, z} (2.17)

and N = 2(Nx + Ny − 2) is the number of computational points along the line lk (2.11).
Figure 2.3 shows results and the normalized local error εi

k along lines lk for the FEM
analysis using the magnetic scalar potential ϕ formulation. The calculations have been
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Fig. 2.3: Test problem - magnetic intensity H and normalized error εi
k calculated using magnetic

scalar potential ϕ (FEM mesh: 15× 15× 15 scalar linear node brick elements)
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performed for a uniform mesh of 15× 15× 15 linear node brick finite elements. It can
be observed that the largest local error (εi

2,z = −5.1%) occurs for Hz component on
the line l2 in the vicinity of the corner where the wrap-current ends and at the same
time K0 changes direction (l2 = 1.6). Increasing the density of the finite element mesh
reduces the global NRMSD of the H field determination according to O(h), where
h is the mesh density. The maximum normalized local error on the line l2 decreases
even faster as O(h2). The relatively large local error near the corner where the surface
current changes direction is not related to the formulation used in the FEM, but is
the result of the specificity of the test problem. In summary, it can be concluded that
the FEM formulation using the magnetic scalar potential ϕ is an effective approach to
modeling the magnetic field in homogeneous magnetic non-conductive domains.

2.3.1. 3d analysis by means of two scalar potentials

In the previous section, the 3D magnetostatic analysis for magnetically homogeneous
domain has been described. For this case, the source magnetic field Hs was taken into
account by setting appropriate non-homogeneous boundary conditions (2.3) and (2.4).
In this section, the region Ω restricted by the boundary Γ, consisting of two parts Ωair
(empty air space, µ = µ0) and ΩFe (ferromagnetic material, µ = µFe) is considered. It is
assumed that the source field Hs is known. In the empty air space Ωair, the magnetic
field Ht can be expressed as a sum of the source (external) field Hs and the induced
field H:

Ht = Hs + H (2.18)

The induced magnetic field H can be described by the so-called reduced magnetic
scalar potential ϕ (H = −∇ϕ). Thus, the magnetic field Ht in the air region is given as:

Ht = Hs −∇ϕ (2.19)

The total magnetic field in the ferromagnetic region can be described by the magnetic
scalar potential ψ as

Ht = −∇ψ (2.20)

The introduction of two different potentials (ϕ and ψ) is motivated by the need to
avoid large computational errors which arise in the case of using decomposition (2.18)
also in the ferromagnetic region [108, 121]. Another reason for applying this approach
is the loss of symmetry of the Jacobi matrix in the FEM in the case when the magnetic
field analysis in the nonlinear ferromagnetic region uses only reduced potential ϕ.

The advantage of using two potentials is a possibility to take into account the exter-
nal source magnetic field Hs directly in the equation describing the magnetic field as

∇ · (µ0∇ϕ) = ∇ · (µ0Hs) (2.21)
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In addition, the two potential approach allows the use of special techniques for mod-
eling unbounded regions (e.g. infinite elements [53]) which significantly reduces the
global number of finite elements in the analyzed region, and thus also the computa-
tion time.

Because the magnetic field is source free (∇ · B = 0), the right side of equation
(2.21) is equal to zero in Ωair except the interface boundary ΓFe between the air and
the ferromagnetic region. Thus, the magnetic field in Ωair and ΩFe is described by
equations{

∇ · (µ0∇ϕ) = 0 in Ωair

∇ · (µFe∇ψ) = 0 in ΩFe
(2.22)

Continuity conditions at the interface ΓFe have the following form:

−µFe
∂ψ

∂n
= µ0

(
Hsn −

∂ϕ

∂n

)
(2.23)

and

−n×∇ψ = n× (Hs −∇ϕ) (2.24)

where n is a unit normal vector to the interface ΓFe directed outside the ferromagnetic
region.

The condition (2.23) can be included in the weak formulation of (2.22) using the
Galerkin’s method for both regions Ωair and ΩFe together:∫

ΩFe

µFe∇wi∇ψdΩ−
∫

ΓFe

µFewi
∂ψ

∂n
dΓ+

+
∫

Ωair

µ0∇wi∇ϕdΩ +
∫

ΓFe

µ0wi
∂ϕ

∂n
dΓ = 0, ∀wi (2.25)

where wi denotes a scalar test function. The change of the leading sign of the second
boundary integral results from the direction of the unit vector n directed into the air
region. After substitution of (2.23) into (2.25), it takes the form:∫

Ωair

µ0∇wi∇ϕdΩ +
∫

ΩFe

µFe∇wi∇ψdΩ = −µ0

∫
ΓFe

HsnwidΓ (2.26)

To include this approach in the finite element procedure the following vector has to be
calculated for every boundary element Γe

Fe located on interface ΓFe:

{B}e = −µ0

∫
Γe

Fe

Hsn[N]dΓ (2.27)

where [N] is a matrix of finite element node shape functions. Vector {B}e has to be
added to the right side of the global system of algebraic equations (load vector) result-
ing from the finite element method.



2.3. 3d analysis of magnetostatic field by means of scalar potentials 25

The boundary condition (2.24) can be integrated along any curve C lying on the
interface ΓFe and connecting the analyzed point Pi with the selected point P0 for which
ϕ(P0) = ψ(P0) is assumed:

ψ(Pi) = ϕ(Pi)−
∫

C(Pi ,P0)
Hsdl (2.28)

The equation (2.28) indicates that the nodes lying on the ΓFe interface should be as-
signed to two different potential values differing by the following constant:

ϕ0 =
∫

C(Pi ,P0)
Hsdl (2.29)

In the finite element method, in order to ensure the uniqueness of the potential descrip-
tion it is assumed that the nodes on the boundary ΓFe are assigned to the potential ϕ.
Fulfillment of the condition (2.28) is ensured by a suitable correction of the global load
vector, i.e., by adding the following vector:

{Fc}e = [SR]{ϕ0}e (2.30)

where {Fc}e is the vector calculated for elements belonging to ΩFe, and touching the
interface ΓFe, [SR] is a reduced boundary stiffness matrix, and {ϕ0}e is the vector of
potential differences on ΓFe (2.29).

In the presented method, the information about the external magnetic field is moved
from the external boundary Γ to the interface ΓFe between air and the ferromagnetic
region. The conditions (2.3) and (2.4) on boundary Γ result from the symmetry or/and
from the cuts of the region Ω.

As an example, the problem shown in Fig. 2.4 is analyzed. The ferromagnetic block
2a× 2b× 2c is placed in a uniform magnetic field Hs = H01y. It is assumed that the
magnetic permeability of the block is constant and equal to µFe. Due to symmetry

z

y
x

H0

H0

H0

lx ly

lz

c

a b

m0

H0

mFe

Fig. 2.4: Ferromagnetic block in external uniform magnetic field
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of the problem, the analysis is sufficient to perform only for 1/8th part of the whole
region. The appropriate boundary and continuity conditions have the following form:

ϕ = ψ = 0 for y = 0 (symmetry)
∂ϕ

∂n
=

∂ψ

∂n
= 0 for x = 0 and z = 0 (symmetry)

Hsn = H0 in equation (2.26) for y = b

ϕ0 = H0y in equation (2.30) for x = a and z = c

infinite elements [53] for x = lx, y = ly, and z = lz.

Calculations have been performed using the finite element mesh consisting of 20 ×
20× 20 8-node linear brick elements. Results for two different values of magnetic per-
meability µFe are shown in Fig. 2.5 in a form of arrows representing magnetic flux
density distribution in the analyzed region.

(a) µFe = 10µ0 (b) µFe = 1000µ0

Fig. 2.5: Ferromagnetic block in a uniform magnetic field - distribution of magnetic flux density
B for different values of µFe

2.3.2. modeling of 3d air coils

In most systems of practical application, the magnetic field should be analyzed not only
in the non-conductive regions, but also in regions (coils) in which the predetermined
current flows. If the coils can not be removed outside the region analyzed, the methods
described in Sections 2.3. and 2.3.1. can not be used.

Subregion in which electric current flows can always be separated by wrapping it
in a smooth surface. However, in this case, the analyzed domain starts to be multi-
connected, and to ensure the uniqueness of the scalar potential, suitable cuts of the
region have to be performed. This approach has been described in many publications,
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e.g. [22, 57, 71, 72]. These works, however, are purely theoretical and the proposed
algorithms are difficult to implement in the general case.

This section presents the analysis limited to the coil windings lying on mutually
parallel planes. This assumption enables the use of only one component of the electric
vector potential T (J = ∇× T) to the description of the source currents flowing in the
coil [98]. The application of the potential T to describe more complex coil systems, for
example the end zone windings of electrical machines, it is also possible, but requires
the use of at least two components of the potential T [120]. In such cases, ensuring the
continuity of the magnetic field on the borders between different region (conductive,
non-conductive) is an important point that should be carefully analyzed.

Taking into account the previous comments, the magnetic field of the coil of finite
dimensions is calculated as follows. The density of the electric source current Js flowing
through the coil is described by the electric vector potential T as:

Js = ∇× T (2.31)

For example, the distribution of the electric vector potential T = Tz(x, y)1z for the

x

y

z

y1

x1

x2

J0y

y2

lz

J0x

(a) Rectangular coil

x

y

T0z

y1 y2

x2

x1
S0 Sx

Sy

(b) Electric vector potential T

Fig. 2.6: Model of a rectangular coil with current and distribution of electric vector potential (one
eighth part)

coil with electric current density J0 shown in Fig. 2.6a takes the form:

Tz =



T0z
y2 − y
y2 − y1

in Sx × [0, lz]

T0z
x2 − x
x2 − x1

in Sy × [0, lz]

T0z in S0 × [0, lz]

0 outside

where T0z = J0x(y2 − y1)− J0y(x2 − x1), lz is half the height of the coil, and the con-
dition J0x(y2 − y1) = J0y(x2 − x1) must be satisfied because of the continuity of the
electric current in the coil. Due to the symmetry of the coil, only one eighth of the
entire system is shown.
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Determination of potential T distribution is a task which has to be solved in the
definition of the problem. For typical coil systems, it is usually a relatively easy task.
It is interesting to focus attention on the continuity of the electric vector potential T.
It is appropriate to ensure the continuity of the potential T on the side walls of the
coil. This leads to the assumption of non-zero constant potential inside the coil (see,
for example S0× [0, lz] region in Fig. 2.6b). Discontinuity of the potential T occurs only
at the end walls of the coil (plane z = lz in Fig. 2.6a), but this kind of discontinuity can
be easily included in the weak integral formulation.

Using the Ampére law:

∇×Ht = Js (2.32)

the total magnetic field Ht in the coil region can be described by the electric vector
potential T and the scalar potential ϕ as

Ht = T−∇ϕ, in Ωc (2.33)

where Ωc denotes the coil region itself together with the interior air area inside the coil.
The magnetic field Ht in the air region Ωe outside Ωc can be described by the scalar
potential ψ

Ht = −∇ψ, in Ωe (2.34)

The assumptions about the continuity of the electric vector potential T also ensure the
continuity of scalar potentials at the boundary of Ωc

ϕ(P) = ψ(P), for P ∈ Γc (2.35)

where Γc denotes the boundary of Ωc.
Only at the end walls of the coil (part of the boundary Γc for z = lz, Fig. 2.6) must

be satisfied in addition the following condition resulting from the continuity of the
normal component of the magnetic flux density:

µc

(
Tn −

∂ϕ

∂n

)
= −µe

∂ψ

∂n
(2.36)

where µc and µe are magnetic permeabilities in Ωc and Ωe, respectively.
The equations describing the magnetic field by means of potentials T, ϕ, and ψ take

the form:

∇ · (µc∇ϕ) = ∇ · (µcT), in Ωc (2.37)

∇ · (µe∇ψ) = 0, in Ωe (2.38)

Using Galerkin’s method, equations (2.37) and (2.38) can be transformed to the equiv-
alent integral weak form as∫

Ωc
wi [∇ · (µc∇ϕ)−∇ · (µcT)] dΩ +

∫
Ωe

wi∇ · (µe∇ψ)dΩ = 0, ∀wi (2.39)
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After applying the vector identity ∇ · (wv) = w∇ · v− v · ∇w and the Gauss’ theorem
yields the equation∫

Ωc
µc∇wi∇ϕdΩ−

∫
Γc

µcwi
∂ϕ

∂n
dΓ−

∫
Ωc

µcT · ∇widΩ +

+
∫

Γc
µcwiTndΓ +

∫
Ωe

µe∇wi∇ψdΩ +
∫

Γc
µewi

∂ψ

∂n
dΓ = 0 (2.40)

where n is the normal unit vector directed outside region Ωc (notice the leading sign
changing in the last boundary integral).

Under the condition (2.36), it can be shown that the sum of boundary integrals in
(2.40) equals zero. Thus, the condition (2.36) is automatically satisfied and (2.40) obtains
the form:∫

Ωc
µc∇wi∇ϕdΩ +

∫
Ωe

µe∇wi∇ψdΩ =
∫

Ωc
µcT · ∇widΩ (2.41)

Application of the finite element method to solve the system of equations (2.37) -
(2.38) with the continuity conditions (2.35) and (2.36) is reduced, therefore, to the deter-
mination of the element stiffness matrix (using the left side of (2.41)) and to calculate
the load vector {F} for elements of the region Ωc:

{F}e =
∫

Ωe
c

µcT · ∇[N]dΩ (2.42)

The process of creating the global matrices and taking into account the boundary condi-
tions at the outer boundary of the region Ωe is similar to that described in the previous
sections.

Modeling coils whose dimensions are small compared to other dimensions of the
analyzed system forces using a large density of the finite element mesh surrounding
the coil and the coil itself. In such cases, replacement of the coil by 3D current wraps
or a single turn with current is often better solution.

Figure 2.7 shows one eighth of an infinitely thin solenoid with rectangular cross-
section. As in the case of thick solenoids, analyzed region is divided into subregion Ωc
lying inside the coil and an external air subregion Ωe. In the region Ωc, the magnetic
field is described by the scalar potential ϕ and constant magnetic intensity H0 = H01z:

Hc = H0 −∇ϕ (2.43)

x

z

y

c
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b

Wc

We

K0

K0

Fig. 2.7: Infinitely thin rectangular solenoid (one eighth part)
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In the external air region Ωe, the magnetic field is depicted by H = −∇ψ. The following
continuity conditions have to be satisfied at the side faces of the solenoid:

n× (−∇ψ−H0 +∇ϕ) = K0 (2.44)

where n is the normal unit vector directed outside the region Ωc and K0 denotes
the surface current density vector. If one assumes n×H0 = −K0 then the condition
(2.44) is satisfied when the scalar potentials are continuous at the boundary Γc, i.e.,
ϕ(P) = ψ(P), P ∈ Γc. It is therefore enough to assume

H0 = K0 =
NI
2c

where N is the number of solenoid turns, I is the current in the coil, and 2c is the
length of the solenoid. Then the vector H0 performs the same function as the electric
vector potential T for thick coils. For elements in Ωc, the load vector {F}e is calculated
according (2.42) where instead of the electric vector potential T the vector H0 is used.

In the case of an infinitely thin current loop located on a plane parallel to the X0Y
plane, the region Ωc is reduced to the surface Sc (Fig. 2.8). The Ampére law indicates

x

a

b

z0

y

I

ISc

We

z

Fig. 2.8: Infinitely thin rectangular current loop (one fourth part)

that the potential ψ is discontinuous on the surface Sc and fulfills the following condi-
tion:

ψ+(P)− ψ−(P) = I, P ∈ Sc (2.45)

In order to distinguish the potentials ψ+ and ψ−, the orientation of the surface Sc must
be defined. It is assumed that the direction of the normal unit vector of the surface Sc
is determined using a right-handed screw rule in relation to the direction of current I.
To satisfy the condition (2.45) in the finite element method, two elements (one on the
negative side, and one on the positive side of surface Sc) with a common face belonging
to the surface Sc are considered. Ascribing the potential ψ+

i to the nodes on the surface
Sc, the potential ψ−i can be eliminated in the following way

[S]−{ψ−}e = [S]−{ψ+}e − [S]−{I}e (2.46)

where [S]− is the stiffness matrix of the element located on the negative side of surface
Sc and {I}e is the vector which is equal to I in positions corresponding to the nodes
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located on the surface Sc and zero elsewhere. In fact, this procedure is analogous to
the procedure taking into account the Dirichlet boundary conditions in the FEM. It
is obvious that the calculation of the magnetic field in the finite element lying on the
negative side of the surface Sc must take into account the actual value of the potential
ψ− equal to ψ+ − I. In the particular case where the infinitely thin current loop is
located in the symmetry plane z = 0 where n×H = 0 the potential ψ− is equal to
potential ψ+ and ψ+ = I/2. This case can be treated as classical Dirichlet problem for
the Laplace equation.

In order to illustrate the method, sample results of calculations of the magnetic field
produced by the infinitely thin rectangular current loop and the thick rectangular air
coil are shown in Fig. 2.9a and Fig. 2.9b, respectively.

(a) Infinitely thin rectangular current loop (b) Thick air coil

Fig. 2.9: Magnetic flux density produced by rectangular air coils calculated using scalar potentials
(one eighth view)

2.3.3. modeling of 3d coils with iron-cores

Determination of the magnetic field using an electric vector potential T to describe
the iron-core coil, whose shape satisfies the conditions set out in the previous section
is also possible. This requires the use of an appropriate assembly of the magnetic
field descriptions in the analyzed regions. As a basic rule should be assumed that
the description associated with the coil region Ωc is dominant. Due to the fact that the
region Ωc includes also the interior of the winding it usually contains a part of the iron-
core. In other words, the iron-core is divided by the surface Γc in a subregion where the
magnetic field is described by the electric vector potential T and scalar potential ϕ, and
the subregion where the scalar potential ψ is sufficient to use. The consequence of this
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approach is the need to define different material codes for the same iron-core (Fig. 2.10).
An alternative approach, based on the assumption of dominance of the magnetic field
description applicable to the iron-core, makes it necessary to take into account the
condition (2.28) on the surface of the core contained in Ωc. However, this method of
analysis of the magnetic field is much more complicated in terms of organization of
data input and calculations.

Figure 2.10 shows the magnetic flux density distribution in the iron-core of a sample
rectangular coil calculated using the dominance of the description of the magnetic field
in the region Ωc.

(a) Calculation setup (b) Magnetic flux density

Fig. 2.10: Magnetic flux density in the iron-core of the rectangular coil (one fourth view)

2.4. 3d magnetostatic analysis using magnetic vector potential

The introduction of magnetic vector potential A defined as B = ∇×A to the descrip-
tion of the three-dimensional magnetic field creates additional difficulties associated
with the uniqueness of this potential [29, 58, 61, 73, 94]. In addition to equation:

∇× (ν∇×A) = 0, in Ω (2.47)

resulting from (2.1) and (2.2) (ν = 1/µ is the magnetic reluctivity), the potential A
has to satisfy the gauge condition which in magnetostatics is typically the Coulomb
condition:

∇ ·A = 0, in Ω (2.48)

There are several ways to fulfill the condition (2.48) in weak formulations used in
the finite element method (see the overview in [61]). In this section, the analysis is
focused on the use of edge finite elements and the case in which A vector components
can be separated, i.e., for each of them can be formulated an independent boundary



2.4. 3d magnetostatic analysis using magnetic vector potential 33

value problem. It should be noted that the inclusion of the source current directly in
the equation (2.47) does not create additional difficulties. Omission of source current
arises only from the chosen way of comparing the presented methods.

2.4.1. edge elements in a-formulation

The use of edge finite elements to determine the distribution of the magnetic vector
potential A is the most simple and direct way to satisfy the gauge condition (2.48).
The properties of edge elements described in Section 1.5. show that the condition ∇ ·
A = 0 is fulfilled in the whole region Ω including the boundary Γ. The continuity of
the normal component of magnetic flux density B between finite elements is satisfied
automatically. The discontinuity of tangential components of B allows to take into
account the heterogeneity of the environment.

The boundary condition (2.3) on ΓH has the form:

(ν∇×A)× n = K0 (2.49)

It can be easily included in the weak formulation (1.4) as:∫
Ω

ν(∇×w) · (∇×A)dΩ =
∫

ΓH

w ·K0dΓ (2.50)

On the boundary part ΓB, the essential condition for A×n has to be set. This condition,
together with the condition ∇ ·A = 0 should be based on (2.4). Unfortunately, it was
not possible to find a general algorithm for determining this condition for any function
Bn0. In the simplest but also the most frequent case when Bn0 = 0 (usually due to the
symmetry of the problem) the following setting can be used:

A× n = 0, on ΓB (2.51)

In the test problem defined in Section 2.2., (2.49) and (2.51) can be fulfilled without
any problems.

Figure 2.11 presents results of magnetic field calculations for the test problem. The
comparison with the analytical results (2.10) and as well with the results received by
means of the scalar potential ϕ (Section 2.3.) shows that the errors εi

1 at points lying on
the line l1 are negligible for both formulations (errors are below 0.15%, see also Fig. 2.3).
The greatest errors appear for the component Hz on line l2 (z/h = 0.7) just above the
line where the condition (2.3) starts to be discontinuous (max relative error 5%). It
should be noted that the values of Hz component calculated using the scalar potential
ϕ are less than the exact values while those obtained from the vector calculation (A
with edge elements) are greater than the exact solution.
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Fig. 2.11: Test problem - magnetic field H and normalized error εi
k calculated using magnetic

vector potential A (FEM mesh: 15× 15× 15 linear edge brick elements)

2.4.2. magnetic vector potential - separation of components

If the nodal vector shape functions (Section 1.4.) are applied to calculations of the
magnetic field in the finite element method, the gauge condition (2.48) has to be directly
inserted into the solved equation. This can be realized by adding to the equation (2.47)
the additional term −∇(ν∇ ·A) = 0 as it is shown below

∇× (ν∇×A)−∇(ν∇ ·A) = 0 (2.52)

Integral, weak form of this equation takes the form:∫
Ω

ν(∇×w) · (∇×A)dΩ +
∫

Ω
ν(∇ ·w)(∇ ·A)dΩ =

∫
ΓH

w ·AdΓ (2.53)
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In order to obtain a unique solution of (2.52), in addition to the boundary conditions
mentioned in the previous section, the following conditions must also be taken into
account:

n ·A = 0, on ΓH (2.54)

∇ ·A = 0, on ΓB (2.55)

In general, conditions (2.54) and (2.55) can be non-homogeneous. However, taking this
into account in the analyzed problems would be only an unnecessary complication.

Further, a special case of the equation (2.52) with the accompanying boundary con-
ditions is considered. When the magnetic permeability µ is constant throughout the
region under consideration, then using the vector identity:

∇× (∇×A) = ∇(∇ ·A)−∇2A

equation (2.52) can be replaced by the following system of scalar partial differential
equations:

∇2 Ax = 0, ∇2 Ay = 0, ∇2 Az = 0 (2.56)

Remark: separation of the components of the vector potential A is also possible in
heterogeneous regions, and even for nonlinear problems, as it will be shown in the
next section.

In order to complete the formulation of the problem, it is necessary to define the
Dirichlet or Neumann boundary conditions for each component of the vector A. This
task is relatively simple when considered part of the boundary lies on the plane per-
pendicular to one of the coordinate axes. For the arbitrary oriented plane the suitable
expressions may be found in [66].

As an example, the definition of boundary conditions for the components of poten-
tial A on parts of ΓH and ΓB lying on the plane z = const with n = 1z is presented.
Boundary conditions on ΓH have the form:

Az = 0 from (2.54) (2.57)

∂Ax

∂z
= µK0x and

∂Ay

∂z
= µK0y from (2.49) and (2.54) (2.58)

For the boundary of ΓB-type, boundary conditions take the form:

Ax = 0 and Ay = 0 from (2.51) (2.59)
∂Az

∂z
= 0 from (2.55) and (2.51) (2.60)

As it can be seen, the partial derivatives in (2.58) and (2.60) correspond to normal
derivatives to the respective boundary surfaces. In an analogous way, the boundary
conditions on the planes x = const and y = const can be defined. Boundary conditions
for the test problem are summarized in Table 2.1.

The solution of the test problem using the finite element mesh consisting of 15×
15× 15 linear brick elements is presented in Fig. 2.12.
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Table 2.1: Boundary conditions for test problem (magnetic vector potential A)

Ax ∂Ax/∂n Ay ∂Ay/∂n Az ∂Az/∂n

x = 0 − 0 0 − 0 −
x = a, z 6 c 0 − − −µK0 − 0

x = a, z > c 0 − − 0 − 0

y = 0 0 − − 0 0 −
y = b, z 6 c − −µK0 0 − − 0

y = b, z > c − 0 0 − − 0

z = 0 − 0 − 0 0 −
z = h − 0 − 0 0 −

(a) Line l1: δ1 = 2.94%

ǫi1,z

ǫi1,y

ǫi1,x

FEM: z/h = 0.1

ǫi 1
[%

]

l
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(b) Line l2: δ2 = 2.36%

ǫi2,z

ǫi2,y

ǫi2,x

FEM: z/h = 0.7

ǫi 2
[%

]

l
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 2.12: Test problem - magnetic intensity H and normalized error εi
k calculated using potential

A with separated components (FEM mesh: 15× 15× 15 linear brick elements)

The greatest normalized local errors εi
k are observed for the component Hz near the

corner x = a, y = b, regardless of the position of the line lk. Increasing the density
of the finite element mesh reduces the local error (although not as significant as for
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Fig. 2.13: Test problem - potential A with separated components - normalized error εi
k for FEM

mesh consisting of 25× 25× 25 linear brick elements

the previous formulations) but the location of its maximum near the corner remains
unchanged (Fig. 2.13).

2.4.3. formulation a-m for nonlinear magnetostatic problems

In the previous sections the analysis was limited to linear problems. In this section,
the three-dimensional nonlinear magnetostatics problems are considered. The idea of
applying in the finite element method the formulation of the field equations using the
magnetic vector potential A and the magnetization vector M is presented. Similarly to
the previous section, the components of the magnetic vector potential are analyzed sep-
arately, which significantly reduces the requirements on the size of computer’s memory.
In [66], the authors have proposed the formulation A-M for linear problems. The idea
presented below is therefore a generalization of work [66].

The magnetic state of the environment may be characterized by three vectors: B (mag-
netic flux density), H (magnetic intensity) and M (magnetization density), connected
with each other by the following relation:

H =
B
µ0
−M (2.61)

where µ0 is the magnetic permeability of free space. It is enough to use any pair of
the above three vectors for a unique description of the magnetic environment state at
any point of the magnetic field generated by source currents or residual polarization
of the environment. Applying the magnetic vector potential A and having (2.61), the
first Maxwell equation takes the following form:

∇× (
1

µ0
∇×A−M) = J (2.62)
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which after applying the Coulomb gauge can be split into three equations correspond-
ing to three components of the magnetic vector potential:

1
µ0

(
∂2 Ax

∂x2 +
∂2 Ax

∂y2 +
∂2 Ax

∂z2

)
+

(
∂Mz

∂y
− ∂My

∂z

)
+ Jx = 0 (2.63)

1
µ0

(
∂2 Ay

∂x2 +
∂2 Ay

∂y2 +
∂2 Ay

∂z2

)
+

(
∂Mx

∂z
− ∂Mz

∂x

)
+ Jy = 0 (2.64)

1
µ0

(
∂2 Az

∂x2 +
∂2 Az

∂y2 +
∂2 Az

∂z2

)
+

(
∂My

∂x
− ∂Mx

∂y

)
+ Jz = 0 (2.65)

The following set of conditions results from the continuity of the magnetic field and
the gauge (2.48) on the interface Γi between regions of different magnetic properties
(indicated by indices I and II):
Γi : x = const, n = 1x
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1
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(2.66)

Γi : y = const, n = 1y
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Γi : z = const, n = 1z
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Applying Galerkin’s method to equation (2.63) yields:

− 1
µ0

∫
Ω
∇wi∇AxdΩ +

∮
Γi

wi

[
1

µ0

∂Ax

∂n
+ (Mz1y −My1z) · n

]
dΓ =

=
∫

Ω

(
∂wi
∂y

Mz −
∂wi
∂z

My

)
dΩ−

∫
Ω

wi JxdΩ (2.69)

The surface integral in (2.69) can be written for any finite element as:∮
Γe

i

wi

[
1

µ0

∂Ax

∂n
+ (Mz1y −My1z) · n

]
dΓ =

=

N f

∑
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i,p

wi

[
1

µ0

∂Ax

∂np
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]
dΓ (2.70)

where N f is the number of element faces . Integrands in expression (2.70) for the
respective unit vectors have the form:
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(2.71)

It should be noted the similarity of the above formulas to the conditions of continuity of
the component Ax (second equations in (2.66), (2.66), and (2.68)). If the face Γe

i,p is in the
area under consideration, the omission of the surface integral in a summation process
automatically ensures fulfillment of the continuity conditions of the field component.
This is due to the fact that the surface integrals of the elements adjacent to the face
Γe

i,p are identical but have opposite signs thereby deleting each other. If Γe
i,p is a part

of the exterior surface, the omission of the surface integral leads to the homogeneous
Neumann condition on this surface (assuming that the external region is free air space).
Analogous equations can be obtained for components Ay and Az.

Since the components of the magnetization M only appear in the element load vec-
tor, this method is particularly well suited to the analysis of nonlinear systems. The
global stiffness matrix has to be calculated only once at the beginning of the calcu-
lation process. In addition, the stiffness matrix is the same for all components of the
magnetic vector potential A which significantly speeds up the calculation. Although
the correction of magnetization vector in a nonlinear iterative process requires at the
same time all three components of the magnetic vector potential, the increase of com-
putational complexity is associated only with the presence of various load vectors for
each component. The iterative calculation algorithm is shown in Fig. 2.14.

It is necessary to explain in more details how to correct the magnetization vector M
in the successive steps of an iterative process. After determination of the components
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Fig. 2.14: Flowchart of solving nonlinear problems with A-M formulation

of the magnetic flux density B = ∇ × A inside finite elements, the components of
the magnetic intensity vector (Hx, Hy, Hz) have to be found using the magnetization
BH-curve µ(|B|). The new values of the magnetization vector M∗ are calculated as:

M∗x =
1

µ0
Bx − Hx, M∗y =

1
µ0

By − Hy, M∗z =
1

µ0
Bz − Hz (2.72)

In order to accelerate the convergence of an iterative process, the magnetization vector
M in the subsequent iterative steps is modified according to the following formula:

M(i) = M(i−1) + ω(M∗(i) −M(i−1)) (2.73)

where ω is a relaxation factor chosen on the basis of numerical experiment, e.g. ω = 0.5.
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2.5. 3d magnetostatic analysis - direct H formulation

Direct application of the magnetic intensity H in calculations of the magnetic field in
the finite element method is subject to significant restrictions. The main limitation is the
inability to take into account the heterogeneity of the environment in such a simple way
as in the case of scalar or vector potential formulations. The second limitation is the
difficulty in including regions with source currents. However, the proposed method
may be useful in certain special cases, for example, in the analysis of some Lorentz
force eddy current testing systems (Section 4.4.).

The analysis presented in this section assumes homogeneity of the magnetic envi-
ronment. Under this assumption, (2.2) can be replaced by the equation:

∇ ·H = 0 (2.74)

Using parameter λ and the following equation

∇×∇×H− λ∇(∇ ·H) = 0 (2.75)

two formulations of the boundary value problem can be introduced, namely: (1) H
with separated components for λ = 1, and (2) H approximated by the edge finite
elements with the condition (2.74) for λ = 0.

2.5.1. direct h-formulation with separated components

Similarly to the magnetic vector potential A formulation, equation (2.75) (λ = 1) may
be replaced by three scalar Laplace equations associated with the corresponding com-
ponent of magnetic intensity H. Boundary conditions on ΓH-type boundary lying in
the plane z = const with n = 1z have the form:

Hx = −K0y and Hy = K0x from (2.3) (2.76)

∂Hz

∂z
= −∂K0x

∂x
+

∂K0y

∂y
from (2.74) and (2.3). (2.77)

Boundary conditions on ΓB-type boundary take the form:

Hz =
1
µ

Bz0 from (2.4) (2.78)

∂Hy

∂z
=

1
µ

∂Bz0

∂y
and

∂Hx

∂z
=

1
µ

∂Bz0

∂x
from (2.1) and (2.4) (2.79)

It should be noted that the determination of the conditions (2.76) - (2.79) is relatively
simple, in contrast to the potential formulations (scalar or vector, see previous sections)
which may be important when the functions K0 and Bn0 are functions of complex
shapes. All boundary conditions for the test problem (Section 2.2.) are presented in
Table 2.2.

Integration of the Dirac function over the element edge located on the boundary
surface produces an additional term. The term is equal to half the length of the element
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Table 2.2: Boundary conditions for test problem (direct H formulation)

Hx ∂Hx/∂n Hy ∂Hy/∂n Hz ∂Hz/∂n

x = 0 0 − − 0 − 0

x = a, z 6 c − K0δ(c) 0 − K0 −
x = a, z > c − 0 0 − 0 −

y = 0 − 0 0 − − 0

y = b, z 6 c 0 − − K0δ(c) K0 −
y = b, z > c 0 − − 0 0 −

z = 0 0 − 0 − − 0

z = h 0 − 0 − − 0

δ(c) is the Dirac function for z = c

edge lying on the segment z = c, x = a, y ∈ (0, b) or z = c, y = b, x ∈ (0, a) multiplied
by K0. This term should be added to the right side vector of the global finite element
algebraic equations system in positions corresponding to the nodes of the edge element.
Results of calculations for the FEM mesh consisting of 15× 15× 15 linear brick finite
elements based on the direct H formulation are shown in Fig. 2.15. The components
Hx and Hy are calculated with a high accuracy while for the component Hz errors are
much greater (e.g. εi

2,z = −18.6% for l = 1.6).
The refinement of the finite element mesh improves the quality of results (see Fig. 2.16

for the FEM mesh with 25× 25× 25 elements). The normalized root mean square devi-
ation as well as the normalized local relative errors decrease for all components of the
magnetic field, e.g. εi

2,z = −11.6% for l = 1.6.
It can be concluded that the poor accuracy of the component Hz is a result of the spe-

cific features of the test problem, i.e., discontinuity of the Dirichlet boundary condition
at z = c, but not the applied H-formulation.
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Fig. 2.15: Test problem - magnetic intensity H and normalized error εi
k calculated using H for-

mulation with separated components (FEM mesh: 15× 15× 15 linear brick elements)
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k for
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2.5.2. edge elements in direct h-formulation

An attempt was made to use the edge finite elements in H formulation to solve the
boundary value problem for equation (2.75) (λ = 0) with the boundary condition (2.3)
on ΓH and homogeneous natural boundary conditions on the walls x = 0 and y = 0.

Figure 2.17 shows a comparison between the analytical solution and the solution
received from the direct H formulation using edge elements.

(a) FEM solution (b) Analytical solution

(c) Line l1 - NRMSD: δ1 = 2396%
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Fig. 2.17: Test problem - magnetic intensity H and normalized error εi
k calculated using H for-

mulation with edge elements - spurious solution (FEM mesh: 15 × 15 × 15 linear edge brick
elements)

The solution obtained by the numerical method has a non-physical nature which
in fact confirms earlier reports given in [107] and [134]. The presence of non-physical
solutions in the formally correct formulated boundary value problem is due to the fact
that on ΓB-type boundary, instead of the stronger essential boundary condition (2.4)
is set the weaker natural condition resulting from the applied edge approximation
(Section 1.5.). The method discussed in this section should be rejected as not suitable
for the calculation of magnetic fields.
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2.6. summary

In this chapter the comparison of various formulations used in the analysis of 3D
magnetostatic fields is presented. First, a general 3D magnetostatic boundary value
problem has been formulated. Next, the simple benchmark problem having the analyt-
ical solution has been introduced. The analysis of 3D magnetostatic fields starts with
the approach using two magnetic scalar potentials (total and reduced). Sample results
have been presented. Modeling of 3D windings without and with a ferromagnetic core
by means of the electric vector potential T together with two examples have been de-
scribed in details. An application of edge elements in the magnetic vector potential
formulation has been shown. Further, it has been demonstrated how to separate com-
ponents of the magnetic vector potential in the A formulation. The formulation A−M
has been introduced to solve nonlinear magnetostatic problems. The corresponding
iterative algorithm for such problems is also formulated. At the end, the direct formu-
lation using the magnetic intensity H has been presented. Negative attempt to apply
edge elements in this formulation has also been discussed.





3
I N T E R FA C E B E T W E E N T W O E L E C T R I C A L LY C O N D U C T I N G
F L U I D S I N C Y L I N D R I C A L C E L L

3.1. introduction

The work presented in this chapter is based on the research project entitled "Detection of
interface movements with the help of magnetic field tomography: Part 1: Experiment and sensor
systems, Part 2: Numerical treatment of inverse problems," realized at Technical University
of Ilmenau and supported by DFG (Deutsche Forschungsgemeinschaft) in years 2001

- 2007. In the frame of this project, the author was a member of group responsible for
developing algorithms and numerical simulations. The experimental part of the project
has been realized by the other group of researchers.

There is a variety of problems in material processing where it is useful to know
time-dependent distributions of the electrical conductivity of a single fluid or a mul-
tiphase flow. For instance, knowledge of the position of the interface between highly
conducting molten aluminum and poorly conducting liquid cryolite is important to
prevent unwelcome instabilities in aluminum reduction cells [32]. Other examples of
such problems can include the identification of electrical conductivity distributions in
glass melting furnaces, metal-slag interfaces in steel and iron making as well as on-
line detection of various inclusions in molted metals. The liquids involved in material
processing such as molten metals, semiconductors, and glass melts are mostly hot and
highly aggressive. Therefore, conventional measurement techniques employing local
probes face serious difficulties. The purpose of this chapter is to demonstrate that a
concept of magnetic field tomography (MFT) which was previously applied to a vari-
ety of problems in biomagnetism [15], can be successfully used to identify the interface
between two current carrying fluids with different electrical conductivities [31, 40]. Ac-
cording to the idea of the MFT, the magnetic field is measured by a finite number of
sensors placed around the tank with two immiscible electrically conducting fluids to
reconstruct the moving interface between them.

If typical figures of aluminum electrolysis cells are considered it must be noticed
that the cross section has usually a length of a few meters, whereas the interface dis-
placement is very small compared to the lateral extent of the system (Fig. 3.1). The
applied high electrical currents (about 100 kA) result in interface displacements of the
order of several centimeters. From industrial practice it is known that already such
small interface displacements can disturb significantly the operation of the cell. This

47
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Fig. 3.1: Sample aluminum reduction cell

is the reason why the estimation of such surface deformations as well as contactless
methods for their observation are of particular interest. The basic idea of the proposed
approach is to exploit to the greatest possible extent the magnetic field produced by
electrical currents which are already present in material processing operations such as
aluminum reduction or electrical glass melting rather than the field due to injection
of an additional artificial electrical current. In particular, it is demonstrated that the
external magnetic field generated by the electrical current flowing through a highly
simplified model of an aluminum reduction cell provides sufficient information for the
reconstruction of the unknown interface shape.

3.2. physical model and formulation of the problem

Figure 3.2 shows the simplified model of the electrolytic bath used in the study. The
model consists of a long cylindrical tank of radius R and height h in which two immis-
cible fluids with different constant electrical conductivities σ1 and σ2 are placed. It is
also assumed that the temperature of the fluids is equal to the ambient temperature.
Although this model is far away from the real aluminum reduction cell, its simplicity
allows to demonstrate important features of methods applied to the identification of
interface shapes between fluids. Another reason for introducing this model is its rela-
tively easy implementation in the laboratory to enable experimental verification of the
identification methods.
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Fig. 3.2: Highly simplified physical model of an aluminum reduction cell

It is assumed that σ1 � σ2 which corresponds to the real situation in the reduction
cell. The wall of the cylinder is non-conductive. At the top of the cylinder a homoge-
neous direct current of density J0 is imposed. In the case of a flat interface between the
fluids (equilibrium state), the distribution of current density J throughout the cylinder
is homogeneous. As soon as the interface is deformed, e.g. due to gravitational waves
or an external forcing, the current density distribution near the interface becomes inho-
mogeneous (Fig. 3.3). The inhomogeneity of J can be represented by the perturbation
current density j.

Fig. 3.3: Current density distribution for fluids in the equilibrium state (left), near axisymmetric
(middle) and near non-axisymetric oscillating interfaces (right)

The question is now whether the interface shape can be reconstructed from the
magnetic flux density B measured outside the cylindrical cell. Generally, the interface
shapes in the cylindrical cell can be split into two group of shapes: (1) axisymmetric,
and (2) non-axisymmetric. Axisymmetric interfaces lead to axisymmetric current den-
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sity distributions which produce magnetic fields with only one azimuthal component
Bα. This means that there is observed no differences between the distributions of the
magnetic fields generated by currents flowing through the various axisymmetric inter-
faces (consequence of the Biot-Savart law). In conclusion, the axisymmetric interface
shapes cannot be identified using magnetic field measurements outside the cylinder.
Such configurations can only be analyzed using electrical potential measurements [81].
However, if the perturbation of the fluid interface is not axisymmetric, it leads to the
non-axisymmetric current density distribution which produces a perturbation of the
magnetic field observed as Br and Bz components outside the cylinder. This fact can be
used for the interface reconstructions.

Using the concept of the magnetic field tomography, a general problem of the inter-
face reconstruction (inverse problem) is formulated as follows: having two immiscible
free oscillating conducting fluids in the cylindrical cell supplied with direct current
reconstruct the interface shape using the magnetic flux density distribution measured
by the sensors located around the cell. In the investigated problem, the construction
of the MFT system is restricted in such a way that it measures only two components
of the magnetic field, i.e., the radial component Br and the axial one Bz, because they
are directly connected with the interface perturbation and have the similar order of
magnitude. The azimuthal component Bα, despite of the part related to the interface
perturbation contains also the main magnetic field produced by the impressed current
J0. The magnitude of the measured Bα is much greater in this case and requires the use
of sensors with different sensitivity range.

In next sections, the interface between two immiscible free oscillating fluids is de-
fined and the methods for calculation of the magnetic field outside the cylindrical cell
(forward problem) are presented.

3.2.1. description of the interface shape

An exact solution of the flow field of two immiscible fluids with the interface free oscil-
lating along z-axis in the cylindrical container is practically impossible. Therefore, for
simplification, it is assumed that the flow field is frictionless, irrotational, and incom-
pressible [82] and only small interface oscillations are considered to avoid instabilities
due to drops formation. Additionally, the influence of the external magnetic field on
the oscillating fluid is neglected. The configuration of the analyzed problem is shown
in Fig. 3.4.

To determine the shape of the free oscillating interface, the Euler equation describing
motion of fluids is used [83]. The fluid moving in a gravitational field is described by:

∂v
∂t

+ (v · ∇)v = −∇p
ρ

+ g (3.1)

where v is the fluid velocity, ∂v/∂t is the local acceleration of the flow, (v · ∇)v is the
convective acceleration for a fluid particle drifting with the stream at the velocity v in
the flow direction, p is the fluid pressure, ρ is the fluid density, and g is the gravitational
acceleration. Equation (3.1) is one of the fundamental equations of fluid dynamics.
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Fig. 3.4: Cylindrical container with two immiscible oscillating fluids

Additionally, the equation of continuity [83] for an incompressible ideal fluid has the
following form:

∇ · v = 0 (3.2)

Because of the assumption of irrotational flow, the velocity v of the flow field can be
expressed as gradient of the velocity potential Φ = Φ(r, t), where r is a position vector.
Hence, the equation (3.2) takes the form

v = −∇Φ → ∇2Φ = 0 (3.3)

which in the cylindrical coordinate system (r, α, z) can be written as:

1
r

∂

∂r

(
r

∂Φ
∂r

)
+

1
r2

∂2Φ
∂α2 +

∂2Φ
∂z2 = 0 (3.4)

The boundary condition at r = R is given as:

∂Φ
∂r

= 0 (3.5)

which follows from the request of vanishing of the normal component of the fluid ve-
locity at the container side wall (vn = 0|r=R). Additionally, taking into account h >> R
(long cylinder), boundary conditions for Φ at bottom and top boundaries of the con-
tainer can be set as:

Φ→ 0, |z| → ∞ (3.6)
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Using the separation of variables method and the Fourier cosine expansion, the general
solution of (3.4) with boundary conditions (3.5) and (3.6) for the interface free oscillat-
ing about a state of equilibrium can be written as an infinite double sum of terms
(modes) oscillating with eigen frequencies ωmn:

Φ1(r, α, z, t) =
∞

∑
m=0

∞

∑
n=1

Cmn
1 cos mα Jm (qmnr) e−qmnz cos ωmnt, z > 0 (3.7)

Φ2(r, α, z, t) =
∞

∑
m=0

∞

∑
n=1

Cmn
2 cos mα Jm (qmnr) eqmnz cos ωmnt, z 6 0 (3.8)

where Jm(·) is the Bessel function of the first kind of order m, and qmn is the nth root of
J′m (qmnr) = J′m (ξmnr/R) = 0|r=R. Table 3.1 shows the roots ξmn for the first 25 modes.

Table 3.1: nth roots of J′m (ξmn) = 0

ξmn
m

0 1 2 3 4

n

1 3.8317 1.8412 3.0542 4.2012 5.3176

2 7.0156 5.3314 6.7061 8.0152 9.2824

3 10.1735 8.5363 9.9695 11.3459 12.6819

4 13.3237 11.7060 13.1704 14.5858 15.9641

5 16.4706 14.8636 16.3475 17.7887 19.1960

Using the following vector identity:

∇(a · b) = (a · ∇)b + (b · ∇)a + a× (∇× b) + b× (∇× a) (3.9)

and substituting a = b = v and ∇× v = 0 for the irrotational fluid, the second term
in (3.1) takes the form:

(v · ∇)v =
1
2
∇(v2) (3.10)

Introducing (3.10) and v = −∇Φ into equation (3.1) gives

∇
(
−∂Φ

∂t
+

1
2

v2 +
p
ρ
+ gz

)
= 0 (3.11)

After integration of (3.11) one can obtain:

−∂Φ
∂t

+
1
2

v2 +
p
ρ
+ gz = F(t) (3.12)

where F(t) is an arbitrary function of time. Equation (3.12) is a general form of the
Bernoulli equation for unsteady incompressible fluid flows. Equation (3.12) can be
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linearized for free interface oscillations and small displacements by neglecting the
squared velocity term. Additionally, because only the spatial derivatives of potential Φ
have a physical meaning (v = −∇Φ), a constant or even any function of time can be
added to Φ whenever it is convenient. This allows inclusion of the integration constant
F(t) (3.12) into the definition of Φ. Finally, the linearized form of (3.12) is given by:

−∂Φ
∂t

+
p
ρ
+ gz = 0 (3.13)

Let η = η(r, α, t) denotes the elevation of the oscillating interface at time t above the
equilibrium state. The elevation η can be determined from the condition for continuity
of pressure (p1 = p2) at the interface z = η. According to (3.13), the pressure continuity
can be written as

ρ1
∂Φ1

∂t
− ρ1gη = ρ2

∂Φ2

∂t
− ρ2gη (3.14)

Finally, the elevation can be expressed as

η =
1
g

1
ρ2 − ρ1

(
ρ2

∂Φ2

∂t
− ρ1

∂Φ1

∂t

)
(3.15)

Before calculation of the interface shape, it is necessary to find the relation between
Cmn

1 and Cmn
2 in (3.7) and (3.8). The normal component of the fluid velocity is continu-

ous at the interface for the equilibrium state

∂Φ1

∂z
=

∂Φ2

∂z

∣∣∣∣
z=0

(3.16)

hence

−qmnCmn
1 = qmnCmn

2 ⇒ −Cmn
1 = Cmn

2 = Cmn (3.17)

The eigen frequencies ωmn in (3.7) - (3.8) are determined as follows. For small inter-
face displacements, the kinematic condition at the interface z = η can be approximately
replaced by a linearized condition at z = 0:

∂η

∂t
= −∂Φi

∂z

∣∣∣∣
z=0

(3.18)

which comes from the assumption that the normal component of velocity for points
on the interface is simply the time derivative of the elevation η(r, α, t). Substitution of
(3.15) into (3.18) gives:

−g(ρ2 − ρ1)
∂Φi
∂z

= ρ2
∂2Φ2

∂t2 − ρ1
∂2Φ1

∂t2

∣∣∣∣
z=0

(3.19)

Inserting (3.7), (3.8), and (3.16) into (3.19) results in the following formula for the eigen
frequency of the mode mn :

ωmn =

√
gqmn

ρ2 − ρ1

ρ2 + ρ1
(3.20)
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Finally, the elevation η of the free oscillating interface can be generally expressed as:

η(r, α, t) =
∞

∑
m=0

∞

∑
n=1

Amn cos mα Jm (qmnr) cos ωmnt (3.21)

where Amn = Cmnωmn(ρ2 + ρ1)/[g(ρ2 − ρ1)]. The equilibrium state described by η =
0|m=n=0 as a trivial solution is excluded from (3.21).

Two types of interface shapes can be distinguished from equation (3.21), namely:

1. Axisymmetric interface shapes

η(r, α, t) =
∞

∑
n=1

Amn J0 (q0nr) cos ω0nt =
∞

∑
n=1

η0n cos ω0nt (3.22)

2. Non-axisymmetric interface shapes

η(r, α, t) =
∞

∑
m=1

∞

∑
n=1

Amn Jm (qmnr) cos mα cos ωmnt =
∞

∑
m=1

∞

∑
n=1

ηmn cos ωmnt (3.23)

where ηmn = ηmn(r, α) denotes the single mode amplitude, m and n are called the
azimuthal and the radial mode number, respectively. Sample snapshots of interfaces at
the moment of maximum elevation described by a single stable mode and oscillating
with the corresponding eigen frequency are shown in Fig. 3.5 (simulations).

Although the number of modes in (3.22) and (3.23) is infinite, usually, the higher
modes can be neglected in a practical analysis because their amplitudes are much
smaller than the amplitudes of modes with low radial and azimuthal numbers [35].
Therefore, instead of (3.23), the following approximation of interface shapes is used
further:

η(r, α, t) =
M

∑
m=1

N

∑
n=1

Amn cos mα Jm (qmnr) cos ωmnt =
M

∑
m=1

N

∑
n=1

ηmn cos ωmnt (3.24)

where M and N are the highest available azimuthal and radial mode numbers, respec-
tively. Axisymmetric modes are excluded due to remarks in the previous section.



(a) Mode η02. (b) Mode η03.

(c) Mode η12. (d) Mode η13.

(e) Mode η22. (f) Mode η23.

Fig. 3.5: Sample normalized interfaces at the moment of maximum elevation - axisymmetric
modes: η02, η03, non-axisymmetric modes: η12, η13, η22, η23
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3.2.2. magnetic field outside cylindrical cell - analytical approach

The supply current flowing in the cell is a direct current. Additionally, the frequency of
oscillating interface η is relatively small. These two facts allows to neglect eddy currents
effects in conducting fluids (∇× E = 0) and in consequence the electrical current in
the cylinder can be described by means of the quasi-static total electric potential V.
Under above assumptions, the procedure for determining the magnetic field around
the cylinder (Fig. 3.2) is obvious. First, the distribution of electric potential V has to be
determined inside the cylinder. Next, using formula J = −σ∇V, the current density J is
calculated. At the end, the magnetic field density outside the cylinder can be calculated
according the Biot-Savart law:

B =
µ0

4π

∫
Ω

J× 1r

r2 dΩ, (3.25)

where Ω denotes the cylinder region.
Any deformation of the interface changes the internal current density distribution

in the cylinder and thus the external magnetic field. Using the quasi-static electric
potential formulation this effect can be described by means of the electric potential ϕ
corresponding to the interface perturbation. The potential ϕ can be found by solving
Laplace equations in the respective fluids:

∇2φ1 = 0, z > η (3.26)

∇2φ2 = 0, z 6 η (3.27)

where η is the interface elevation and

φ1,2 = J0
z

σ1,2
+ ϕ1,2 (3.28)

J0 is the impressed constant current density at the top of cylinder. To simplify the
analysis, the height of the cylinder h is assumed to be much greater than the radius R
(h� R). The following boundary conditions can now be formulated:

∂ϕ1,2

∂r
= 0, r = R (3.29)

∂ϕ1,2

∂z
= 0, z→ ±∞ (3.30)

which correspond to the facts that the wall of the cylinder is an electrical insulator and
the distribution of current density vector J should be homogeneous at the top and the
base of the cylinder, i.e., the influence of current perturbation is vanishing far away
from the interface. The perturbation potential ϕ in the respective fluids can be found
by means of the separation of variables method as:

ϕ1 =
∞

∑
m=1

∞

∑
n=1

Cmn
1 Jm(qmnr) cos mαe−qmnz, z > 0 (3.31)

ϕ2 =
∞

∑
m=1

∞

∑
n=1

Cmn
2 Jm(qmnr) cos mαeqmnz, z 6 0 (3.32)
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where Jm(·) is the Bessel function of the first kind of order m and qmn is the nth root of
J′m (qmnr) = J′m (ξmnr/R) = 0|r=R (see Table 3.1).

In general case, it is not possible to find the analytical solution of (3.26) - (3.27) in
the form of (3.31) because the following continuity conditions cannot be fulfilled at the
interface:

φ1 = φ2, z = η, (3.33)

n · (J1 − J2) = 0, z = η (3.34)

However, the approximate analytical solution can be found for infinitesimal perturba-
tions of the interface (η � R, h) by introducing at z = 0 the following jump condition
[32, 70] instead of the potential continuity at z = η:

ϕ1 − ϕ2 = J0η

(
1
σ2
− 1

σ1

)
, z = 0 (3.35)

The continuity of the normal component of the current density at z = 0 is defined as:

σ1
∂ϕ1

∂z
= σ2

∂ϕ2

∂z
, z = 0 (3.36)

because n ≈ 1z, for small perturbations. Now, using (3.23), the constants Cmn
1,2 can be

obtained as:

Cmn
1 = At

mn J0
1
σ1

σ1 − σ2

σ1 + σ2
(3.37)

Cmn
2 = At

mn J0
1
σ2

σ2 − σ1

σ1 + σ2
(3.38)

where At
mn = Amn cos ωmnt denotes the time dependent amplitude of the oscillating

interface.
Current density components of the current flowing in the cell regions can be found

from J = −σ∇V as:

J1,2
r = ∓J0

σ1 − σ2

σ1 + σ2

∞

∑
m=1

∞

∑
n=1

At
mn qmn

Jm−1(qmnr)− Jm+1(qmnr)
2︸ ︷︷ ︸

d Jm(qmnr)/dr

cos mαe−qmn |z| (3.39)

J1,2
α = ±J0

σ1 − σ2

σ1 + σ2

∞

∑
m=1

∞

∑
n=1

At
mn

m
r

Jm(qmnr) sin mαe−qmn |z| (3.40)

J1,2
z = −J0 ∓ J0

σ1 − σ2

σ1 + σ2

∞

∑
m=1

∞

∑
n=1

At
mnqmn Jm(qmnr) cos mαe−qmn |z| (3.41)

The magnetic field outside the cylinder can be calculated using the Biot-Savart law
(3.25) and (3.39) - (3.41). The integral (3.25) is computed numerically as follows. First,
a mesh of tetrahedral elements inside the cylinder is created. Next, it is assumed that
the current density in every tetrahedral element is constant and is equal to the value
calculated at the center of gravity (COG) of the element using analytical formulas
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(3.39) - (3.41). Further, assuming that elements of created mesh are sufficiently small
comparing a distance where the magnetic field is calculated (magnetic sensor positions)
the integral (3.25) can be replaced by the following sum:

B0 =
µ0

4π

Ne

∑
i=1

Ji × (ri − r0)

r3
i

∆Ωi, (3.42)

where Ne is the total number of tetrahedral elements, Ji is the current density vector in
ith-element, ri is COG-position of ith-element, r0 is the magnetic sensor position, and
∆Ωi is the volume of ith-element.

Further, results of calculations of Br and Bz component using (3.42) around the cylin-
drical cell are presented as field distributions over the evolved appropriate sensors
array. The construction principle of the evolved arrays is shown in Fig. 3.6.

Fig. 3.6: Construction principle of evolved sensors array together with Br distribution

The following parameters of the cell model are applied: h = 100 mm (cylinder
height), R = 25 mm (cylinder radius), σ1 = 100 S/m (upper fluid conductivity), σ2 =
3.46 MS/m (lower fluid conductivity), and J0 = 509.3 A/m2 = 1 A /(πR2) (impressed
current density at z = h/2). The magnetic field around the cylinder is calculated at the
distance d = 10 mm from the cylinder wall in the range of z ∈ [−30 mm, 30 mm]. Fig-
ure 3.7 shows distributions of the radial (Br) and axial (Bz) components of the magnetic
field for the interface perturbation amplitude equals A = 2.5 mm � R. The snapshots
are taken for the instant when the interface perturbation reaches the maximum eleva-
tion. It should also be noticed that the maximums of radial and axial components are
over 30 times smaller than the maximum of the azimuthal component Bmax

α = 4770 nT
calculated for the undisturbed interface at the equilibrium state.
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Fig. 3.7: Analytical solution for interface modes 11− 12 and 21− 23 - distributions of Br and
Bz around cylinder at r = R + d = 35 mm for the moment of maximum interface elevation
(A = 2.5 mm)

3.2.3. verification of the analytical approach

An important part of every stage in a solving process of any technical problem is a
verification of the applied method. It is important to find how close are simulation
results to the physical model and to check if there are not any principal errors in the
applied method (method validity) or in its implementation. The verification, in the
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simplest case, can be performed by applying to the same problem a different method
which better describes the real model. Of course, ultimately the best verification is the
comparison between simulations and measurements. However, this type of verification
is beyond the scope of the monograph. The goal of this section is to present a compari-
son of magnetic field calculated by analytical methods described in Section 3.2.2. with
results of simulations performed with the help of the finite element method (FEM).

Application of the finite element method requires, in principle, to replace only one
procedure in the algorithm for calculating the magnetic field around the cylindrical cell.
Namely, the procedure that determines the electric potential and current density distri-
bution in the cell. The rest of the algorithm remains unchanged. The main advantage
of using the finite element method is to eliminate the problem of continuity conditions
fulfillment (3.33) - (3.34) at the interface which could not be accurately resolved in the
analytical approach. The continuity conditions are automatically fulfilled in any FEM
implementation using the electric scalar potential.

Using assumptions from Section 3.2.2., the problem of finding the current density
distribution in the oscillating fluids is reduced to the static analysis of the cylindri-
cal cell with two homogeneous conducting regions at the moment when the interface
between regions reaches the maximum elevation. In principle, such problem can be
solved by any commercial FEM software with an electromagnetic module. In the an-
alyzed problem, an important factor which has to be taken into account during a se-
lection of suitable FEM software is the answer to the question: how easy the interface
geometry given by (3.21) can be modeled. Unfortunately, it was not possible to find
any commercial FEM program which enables the modeling surface patches defined
by Bessel functions directly in a graphical user interface (GUI). Usually, the user has
to prepare the separate external procedure which generates geometry data of the sur-
face patch and then to import it into GUI. How easily this can be accomplished is the
fundamental question. After thorough analysis of all the pros and cons of available
FEM programs, COMSOL Multiphysics® (earlier known as FEMLAB®) was selected
for further use.

COMSOL Multiphysics® is an engineering, design, and finite element analysis soft-
ware environment for the modeling and simulation of any physics-based system [26].
COMSOL® can be integrated with Matlab® which is a high-level technical computing
language and interactive environment for algorithm development, data visualization,
data analysis, and numeric computation [88]. COMSOL® and Matlab® together, create
powerful numerical environment with a seldom flexibility which enables to solve a lot
of technical problem.

As an example of using COMSOL® package, cylindrical cell model described in the
previous section is presented. The model implemented in COMSOL® together with
the applied finite element mesh are shown in Fig. 3.8. Figure 3.9 presents the electric
scalar potential at cross-sections x = 0 and y = 0 together with the current density
distribution calculated in the analyzed cell.

An alternative to commercial software are packages specifically adapted to the ana-
lyzed problem and self-developed by the user. Using such approach, the user, in the
first phase, spends more time for the software preparation but as a result he receives
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(a) Physical model. (b) Sample finite element mesh.

Fig. 3.8: Cylindrical cell with two conducting fluids - mode η21 for the moment of maximum
interface elevation (A = 7.0 mm)

(a) J and V at x = 0 and y = 0. (b) J and |J| near interface.

Fig. 3.9: Results of FEM calculations in a cylindrical cell - current density J (cones) and electric
scalar potential V distributions

potentially more flexibility for implementation specific features of the problem and
has full control over the implemented code. Usually, if the code is properly optimized,
the developed program can also run faster than the commercial one. Using this ap-
proach, the author has developed the TFEM3D routine. The TFEM3D routine based
on the finite element method allows calculations of current density distributions in the
cylindrical cell filled with two conducting fluids. Additionally, procedures for calcula-
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tions of magnetic flux density components outside the cylinder for predefined sensor
configurations are integrated in TFEM3D.

The main structure of the finite element part of TFEM3D is based on SONMAP2D
[51], a general system for numerical analysis of 2D electrodynamic problems. It was
necessary to rewrite completely the pre- and post-processing routines to adopt them
to the cylindrical cell problem. The method of solving large, sparse systems of linear
algebraic equations used in SONMAP2D had also to be changed. In the first version
of TFEM3D, the Yale sparse matrix package containing direct solvers for symmetric
and non-symmetric systems of linear equations [36, 37] has been implemented. An im-
portant problem that must be considered when a new solver is implemented, is the
storage scheme of matrix data structures used by the solver because this directly influ-
ences routines creating and assembling global stiffness and load matrices in the finite
element method. The Yale package uses a special storage scheme for storing sparse
matrices. The Yale scheme has minimal storage requirements and is very convenient
for sparse matrix operations. In this scheme, the values of the nonzero elements of the
sparse matrix [A] are stored by rows, together with their corresponding indexes which
are located in two vector arrays {AN} and {JA}, respectively. The third vector array
{IA} contains pointers to the first element in each row of the matrix [A], e.g.:

[A] =


11 0 13 14

0 22 0 24

31 0 33 0

0 42 0 44


{AN} = [11 13 14 22 24 31 33 42 44]T

{JA} = [1 3 4 2 4 1 3 2 4]T

{IA} = [1 4 6 8 10]T

This representation is complete because the entire matrix is represented, and ordered,
and because the elements of each row are stored in the ascending order of their col-
umn indexes. Following [109], it is assigned as RR(C)O, which states for Row-wise
Representation, (C)omplete and Ordered.

Unfortunately, the direct solvers are fast enough for systems up to, roughly saying,
100000 unknowns which is enough for most of 2D problems but it is usually too less for
3D cases. For 3D problems, the iterative solvers have to be considered. For this reason,
in the second version of TFEM3D, it was decided to implement a part of free-available
public domain Common Mathematical Library (SLATEC CML) [130], namely, Sparse
Linear Algebra Package (SLAP) which contains a set of several iterative solvers of
linear algebraic systems. SLATEC is the acronym for the Sandia, Los Alamos, Air Force
Weapons Laboratory Technical Exchange Committee. This organization was formed in
1974 to foster the exchange of technical information. The SLATEC CML is written in
FORTRAN 77 and contains general purpose mathematical and statistical routines. The
sparse linear algebra package uses two storage schemes of sparse matrices: 1) the SLAP
Triad format, and 2) the SLAP Column format. In the SLAP Triad format only the non-
zero elements are stored. They may appear in any order. The user must supply three
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vector arrays: {AN} with non-zero elements of matrix [A] and their locations given
in {IA}, {JA} with the row and column indexes, respectively, e.g.:

[A] =


11 0 13 14

0 22 0 24

31 0 33 0

0 42 0 44


{AN} = [22 14 31 42 44 13 33 24 11]T

{JA} = [2 4 1 2 4 3 3 3 1]T

{IA} = [2 1 3 4 4 1 3 2 1]T

The SLAP Triad scheme is very easy to generate and it can directly be obtained from
the Yale scheme but on the other hand it is not very efficient for the iterative solution of
linear systems especially on vector computers. In fact, SLAP changes internally this for-
mat to the SLAP Column format in the iteration solvers which is much more effective.
The SLAP Column format is very similar to the Yale scheme but instead of row-wise
representation it uses column-wise one. Additionally, it is unordered because non-zero
elements of matrix [A] must not be ordered in the column. According to [109], it can
be classified as CR(C)U scheme (Column-wise Representation, (C)omplete, Unordered),
e.g.:

[A] =


11 0 13 14

0 22 0 24

31 0 33 0

0 42 0 44


{AN} = [11 31 42 22 13 33 44 14 24]T

{JA} = [1 3 4 2 1 3 4 1 2]T

{IA} = [1 3 5 7 10]T

A valuable feature of the SLAP package is that for symmetric problems, the Yale storage
scheme can be directly used in it without applying any additional conversion routines.

Several tests have been carried out to compare COMSOL Multiphysics®
3.5a with

TFEM3D using CPU time of FEM calculations as a test criterion. Tests run on PC com-
puter equipped with Intel Core i7 Extreme 975 processor and 24GB RAM under 64
bit Windows 7 Professional. In all comparisons, the same models were used, i.e., first,
the model of the cylindrical cell was created and calculated in COMSOL® and then,
after conversion, the model was imported and calculated by TFEM3D. In all simula-
tions, the first order tetrahedral finite elements have been applied. It was found that
for COMSOL® as well as for TFEM3D choosing a preconditioned conjugate gradient
method as a solver gave results in the fastest way. The preconditioned conjugate gradi-
ent method (PCGM) is suitable for the symmetric, positive definite linear systems. In
all tests, the diagonal scaling (DS) has been used as the preconditioning routine. This
routine performs left preconditioning using the main diagonal of the stiffness matrix.

Table 3.2 presents CPU times of solving linear systems of algebraic equations with
Np unknowns in COMSOL® and in TFEM3D; Ne denotes the number of tetrahedral
elements of the corresponding finite element meshes. It can be observed that TFEM3D
solves the FEM task about 30% faster than COMSOL®.

In the TFEM3D preprocessor, a simple finite element mesh generator of tetrahedral
elements is implemented. It works on a slice principle and depends only on two pa-
rameters: the predefined maximum size of element edge dE, used during generation
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Table 3.2: CPU time of FEM calculations (Solver: PCGM+DS)

COMSOL V.3.5a TFEM3D

Ne Np CPU [s] CPU [s]

1 206779 37623 0.72 0.39

2 819797 153568 4.37 2.57

3 2631993 488359 18.74 12.01

4 8428313 1535399 81.97 53.27

of a regular 2D triangular mesh of the cylinder base, and the number of slices NSL,
which determines the mesh density in the z-direction. TFEM3D slice generator works
as follows: first, a uniform slice distribution throughout the cylinder is created, then
it is rescaled relative to z = 0 using the exponential scaling function to receive more
dense mesh in the vicinity of the interface (EXP-mesh). At the end, the deformed inter-
face shape is calculated according to (3.23) and applied to modify z-coordinates of all
nodes of the exponential mesh where |z| < h/2 (Fig. 3.10). The slice generator imple-

Fig. 3.10: Cylindrical cell - four steps of finite element mesh construction

mented in TFEM3D works faster than the general finite element mesh generator based
on 3D Delaunay triangulation used in COMSOL® . It eliminates also not necessary
overloading of elements in regions where the interface touches the cylinder wall (see
Fig. 3.8).

Now, the verification of analytical results presented in the previous section will be
shown using the FEM calculations carried out with the TFEM3D routine. As previ-
ously, the same cell model is used, i.e., h = 100 mm (cylinder height), R = 25 mm
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(cylinder radius), σ2 = 3.46 MS/m (lower fluid conductivity), σ1 = 100 S/m (upper
fluid conductivity), and J0 = 509.3 A/m2 = 1 A/(πR2) (impressed current density at
z = h/2). The magnetic field around the cylinder is calculated at a distance d = 10 mm
from the wall of the cylinder in the range of z ∈ [−30 mm, 30 mm]. The FEM model
is generated using the maximum 2D edge size equals dE = 1 mm and the number of
slices NSL = 50 which gives the FE mesh with the total number of tetrahedral ele-
ments equals Ne = 3131100 and the number of nodes equals Np = 681166. Figure 3.11

Fig. 3.11: FEM solution for interface modes 11− 12 and 21− 23 - Br and Bz around cylinder at
r = R + d = 35 mm for the moment of maximum interface elevation (A = 2.5 mm)
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shows distributions of radial (Br) and axial (Bz) components of the magnetic field for
interface perturbations oscillating with the amplitude equals A = 2.5 mm. Results are
presented in a form of equi-level plots over evolved cylindrical surface The snapshots
are taken for the time instant which corresponds to the interface perturbation with
the maximum elevation. After a visual inspection of calculated distributions it can be
found significant differences between the analytical solution and the FEM one, espe-
cially for higher radial modes although the amplitude of the oscillating interface fulfills
A � R condition. It can also be noticed that the magnetic field distribution received
from the analytical solution does not follow the interface distortion as it is in the FEM
case. To verify the analytical results quantitatively, the rectangular array of Na × Nz
evenly distributed magnetic sensors is constructed around the cylinder at the distance
d = 10 mm in the range of z ∈ [−30 mm, 30 mm] , where Na is the number of sensors
in one azimuthal row and Nz is the number of rows in z-direction. The following total
relative error indicators are defined:

δ%
r =

√√√√√∑Nr
j=1 ∑Na

i=1

(
BANA

r − BFEM
r

)2
ij

∑Nr
j=1 ∑Na

i=1

(
BFEM

r
)2

ij

100% (3.43)

δ%
z =

√√√√√∑Nr
j=1 ∑Na

i=1

(
BANA

z − BFEM
z

)2
ij

∑Nr
j=1 ∑Na

i=1

(
BFEM

z
)2

ij

100% (3.44)

where indices ANA and FEM stand for the magnetic field calculated with the help of
the analytical and the FEM solution at ij sensor position, respectively.

Table 3.3 shows relative total errors calculated for various amplitudes of the interface
distortion when the sensor array is defined on Na × Nz = 72× 21 rectangular grid of
points. It can be seen that the calculated errors are very large for almost all modeled

Table 3.3: Analytical solution - total relative errors

δ%
r δ%

z

Mode A[mm] A[mm]

1.0 2.5 7.0 1.0 2.5 7.0

11 1.0 2.4 6.7 2.1 4.9 14.0

12 14.1 35.5 99.4 22.5 56.8 165.0

13 43.0 73.7 89.6 68.5 129.0 170.7

21 0.9 2.2 6.8 1.7 4.3 13.5

22 6.6 17.4 69.0 11.1 29.1 111.3

23 18.8 40.5 65.8 30.7 68.3 119.8

interfaces (except interfaces defined by modes η11 and η21). Sample 1D distributions of
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magnetic field components around the distorted interface described by the mode η13
are plotted at one sensor row located at z = 0 and r = 35 mm (Fig. 3.12 and 3.13).

Fig. 3.12: Analytical (AS) versus FEM solution for interface mode η13 - distribution of Br around
cylinder in one row of sensors located at r = R + d = 35 mm and z = 0

Fig. 3.13: Analytical (AS) versus FEM solution for interface mode η13 - distribution of Bz around
cylinder in one row of sensors located at r = R + d = 35 mm and z = 0

The first are analyzed distributions of magnetic field for cases when formulas (3.39)
- (3.41) are applied (analytical solution). It is perceived that 1D distributions of the
magnetic field are sinusoidal with a spacial period 2π/m, where m is the azimuthal
mode number of the oscillating interface. The amplitudes of these distributions linearly
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dependent on the maximum elevation of distorted interfaces, i.e when the maximum
elevation of the analyzed interface is p times greater than the maximum elevation of
the reference distortion then, the corresponding magnetic field values are also p times
greater than the reference one, respectively. The similar effect can be observed for the
relative total error at low order interface modes where the total error almost linearly
rises with the elevation amplitude (see Table 3.3). Another feature of magnetic field dis-
tributions based on the analytical solution is the lack of z component of the magnetic
flux density at the equilibrium plane z = 0. All above features are the consequence of
flattening of the interface distortion to the equilibrium position and applying condi-
tions (3.35) and (3.36) in the analytical approach. On the other hand, in FEM results,
magnetic field distributions follow the outline of the distorted interface on the cylin-
der wall, i.e., positions of magnetic flux density components maximums depend on
the interface elevation amplitude and are located outside z = 0. This is the reason
why no linear relation can be found between magnetic field distributions for the same
interface mode but with a different elevation amplitude. Additionally, it can be ob-
served the non-zero Bz component at sensors placed in one row corresponding to the
interface equilibrium position z = 0 (Fig. 3.12). The modified analytical approach has
been proposed in [156] to improve results the quality of the analytical method. In the
modified approach, some additional terms are added to the original analytical solu-
tion corresponding to harmonics found in the spatial Fourier analysis of magnetic flux
density distributions received from the FEM calculations. Although the modified ap-
proach reduces errors of calculated magnetic field distributions, it is still restricted to
small elevation amplitudes A < 2.5 mm.

Finally, it can be concluded that if a large range of elevation amplitudes of distorted
interfaces is considered the only procedure which can be applied for the interface
reconstruction algorithm is the routine based on the finite element method because the
analytical approaches give magnetic field distributions far away from the reality.

3.3. interface shape reconstruction - dominant mode identification

In this section, some methods applicable to the solution of the interface reconstruction
problem formulated in Section 3.2. are presented. First, the problem is defined in more
details. It is assumed that the elevation of the interface between two immiscible fluids
located in the cylindrical tank can be fully described by (3.24). Therefore, the general in-
terface reconstruction problem can be reduced in fact to the identification of coefficients
Amn in (3.24). The choice of the highest azimuthal (M) and radial (N) mode numbers
in the expression (3.24) used during the reconstruction process depends strongly on a
configuration of applied magnetic sensor system. If only simulations are considered,
this choice is not critical because any configuration of sensors can be applied as it is
necessary. In consequence, M and N are assigned to relatively high values. However,
in the reality, as the construction of the real measurement system has to be taken into
account it is not possible to use so many sensors as necessary because of the design
constrains and the cost of system implementation. Above limitations restrict signifi-
cantly the possible choice of the highest mode numbers in the expression (3.24). In the
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analyzed implementation, the system consists of 8× 2 magnetometer sensors evenly
distributed around the cylindrical cell which enables to measure two components of
the magnetic flux density at one measurement point, i.e., the radial, Br and the axial,
Bz component.

Figure 3.14 shows the configuration of 2D-magnetometer sensors used in the analysis
with sensors schematically represented by two perpendicular solenoids.

Fig. 3.14: Configuration of evenly distributed magnetometer sensors mounted on the sensor ring
used during simulations (average distance of sensors COG to z-axis equals r = 40 mm)

In order to simplify the analysis even more, the general problem of the interface
shape reconstruction between two conducting fluids is reduced to the identification of
the interface dominant mode. In other words, the only one coefficient in (3.24) which
corresponds to the dominant mode in the oscillating interface is searched. The algo-
rithm of full interface reconstruction based on genetic algorithms can be found in
[76]. The dominant mode identification approach can be treated as a first shot method
of finding the general shape of the interface and can be further connected with the
method presented in [76]. All methods which are presented here have one common
feature, they are non-gradient methods, i.e., they are not using descent derivatives in
the successive minimization steps. Additionally, they reach the solution much faster
as the general reconstruction algorithm [76]. Three methods will be presented: the first
one based on a simple genetic algorithm [49], the second one using the direct search ap-
proach [157], and the third one applying the correlation between measured/simulated
signal and signals stored in the previously calculated data-base [151].

Before describing the methods, the analysis of magnetic flux density profiles recorded
or simulated by the measuring system shown in Fig. 3.14 is presented to determine the
limitations of the applied system.
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3.3.1. signal profiles and limits of measurement system

Because the oscillating interface at the maximum elevation moment produces the maxi-
mum distorted magnetic field, it is enough to analyze profiles of magnetic flux density
distributions for this moment only. The magnetic sensors are evenly distributed around
the cylinder and fixed on a printed board which has a ring form (Fig. 3.14 and 3.15). The
axial and azimuthal position of the ring are controlled by two parameters: z0−distance
and α0−angle relative to the coordinate system used in the interface modeling.

Figure 3.15 shows a sample distribution of the radial component of magnetic flux
density calculated for the maximum elevation of the oscillating interface described by
mode η13 with the amplitude A = 7 mm. The sensor ring is located in the middle of the

Fig. 3.15: Sample Br signal simulated at z = 0 for the moment of maximum interface elevation
described by the mode η13 (A = 7 mm). Relative angular position of the sensor ring in relation
to the cell coordinate system equals α0 = 0

cell (z0 = 0) and the coordinate system of the sensor ring coincides with the coordinate
system of the cell (α0 = 0).

Determination of characteristic features of Br, Bz signals based on a direct analysis
of signal profiles is not straightforward especially if you notice significant changes of
the profile with a variation of the azimuthal position of the sensor ring.

Figure 3.16 shows a sample distribution of the radial component of the magnetic flux
density calculated for two azimuthal positions of the sensor ring, α = 0 and α = 20°,
produced in the vicinity of the oscillating interface and corresponding to the maximum
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Fig. 3.16: Signal profiles of radial component Br simulated at z0 = 0 for the moment of maximum
interface elevation defined by the mode η23 (A = 7 mm). Ring with 8 sensors at two azimuthal
positions: α0 = 0 and 20° (left), ring with 64 virtual sensors at α0 = 0 (right)

elevation of mode η23 with the amplitude equals A = 7 mm. The distribution of Br
component simulated for the sensor ring with 64 virtual sensors is also shown for
comparison.

The features of used signals can be identified much easier if the analysis is per-
formed in a spatial frequency domain. Switching to the spatial frequency domain can
be realized by applying the spatial Fourier transform to simulated/recorded distribu-
tions of magnetic flux densities around the cylindrical cell. Because all signal profiles
are periodic with a spatial period equals T0 = 2π/m, resulting Fourier transforms are
given as series of complex coefficients describing discrete harmonics of the signal that
are an integer multiple of the fundamental frequency f0 = 1/T0.

In fact, instead of continuous Fourier transform, only a spatial discrete Fourier trans-
form (DFT) can be performed using a sequence of magnetic flux densities calculated
at Ns sensor positions located on the sensor ring and treated as discrete samples repre-
senting the original signal. In this sense, the spatial sampling frequency is defined by
the number of sensors Ns and is equal to fs = Ns f0. Using the Nyquist-Shannon sam-
pling theorem [100, 118] the upper bound for harmonics of the signal is determined
to allow its perfect reconstruction as f < fs/2. The upper bound of the perfect signal
reconstruction is called the Nyquist frequency and is denoted as fN = fs/2 . In the
analyzed case, the number of sensors and the Nyquist frequency are equal to Ns = 8
and fN = 4 f0, respectively. It means that only signals with frequency spectrum limited
to the first three harmonics can be perfectly reconstructed by the system. As an ideal
signal reconstruction it is understood the inverse Fourier transformation which gives
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correct real signals at sensors from calculated discrete Fourier transforms independent
on the used azimuthal position of the sensor ring.

To study frequency contents of signal profiles produced by various interface shapes
defined by single interface modes, the amplitude spectra are calculated for the follow-
ing interface modes: ηij where i = 1 . . . 3, j = 1 . . . 3. In calculations of signal spec-
tra, the fftw_plan_dft_r2c_1d procedure (1D DFT for real input and complex output)
from FFTW library is used. The FFTW library is a collection of fast C-routines for com-
puting the discrete Fourier transform [38]. The real-input (r2c) DFT in FFTW of a 1D
real array x of size N computes a forward Fourier transform X according to:

X [k] =
N−1

∑
n=0

x [n] e2πnjk/N , j =
√
−1 (3.45)

FFTW computes an unnormalized transform, where is no coefficient in front of the
summation in the DFT. In other words, applying the forward and the backward trans-
form sequentially will multiply the input by N. The output complex array X posses
the Hermitian symmetry:

X [k] = X∗ [N − k] (3.46)

where X is assumed to be periodic so that X [N] = X [0]. As a result of this symmetry,
half of the output is redundant (being the complex conjugate of the other half), and
therefore the FFTW calculates only output elements 0 . . . N/2 of X (N/2 + 1 complex
numbers), where the division by 2 is rounded down, saving computation time and
used memory. Moreover, the Hermitian symmetry implies that X [0] and, if N is even,
the X [N/2] elements are purely real [38].

First, 64 virtual sensors are used to assure that all significant harmonics of the ana-
lyzed signals are found. Figures 3.17 and 3.18 show calculated amplitude spectra for
radial and axial components of the magnetic flux density using the virtual 64-sensor
ring located at z0 = 0. It can be observed that the index of the dominant harmonic
in Br amplitude spectrum corresponds to the azimuthal index i of the analyzed inter-
face mode. However, this is not the case for Bz amplitude spectra, where the index of
the dominant harmonic follows a multiple of the azimuthal index i, generally. Using
the Nyquist frequency equals fN = 4 f0, it can be stated that for the 8-sensor ring the
perfect reconstruction of signal profiles is only possible for the following modes: η11,
η12, η13, η21, and η31 for Br component and η11, η12, η13 for Bz component. Figures 3.19

and 3.20 depict amplitude spectra of the same signals as above but calculated using
the 8-sensor ring. It can be observed that the spectra of signals where the perfect recon-
struction with 8 sensors is possible remain unchanged whereas the spectra of signals
for which the perfect reconstruction is not possible are quite different. Especially, the
spectra of signals for the interface described by modes η2x are quite similar because
for all these modes, frequencies of some significant harmonics are located at or above
the Nyquist frequency and therefore they are eliminated when the analysis is carried
out using only 8 sensors. This also explains why the distinction of some modes in the
process of the dominant mode identification is very difficult.



Fig. 3.17: Modes η11 - η33: amplitude spectra of radial component of magnetic flux density for
64 virtual sensors evenly distributed around the cylinder at z0 = 0 and r = R + d = 40 mm



Fig. 3.18: Modes η11 - η33: amplitude spectra of axial component of magnetic flux density for 64
virtual sensors evenly distributed around the cylinder at z0 = 0 and r = R + d = 40 mm



Fig. 3.19: Modes η11 - η33: amplitude spectra of radial component of magnetic flux density for 8
sensors evenly distributed around the cylinder at z0 = 0 and r = R + d = 40 mm



Fig. 3.20: Modes η11 - η33: amplitude spectra of axial component of magnetic flux density for 8
sensors evenly distributed around the cylinder at z=0 and r = R + d = 40 mm
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It can also be noticed an interesting feature of the DFT for modes η32 and η33. The
original spectra of the signals corresponding to these modes contain sixth harmonic
which cannot be detected in the case of using the ring with 8 sensors. Instead of the
sixth harmonic, the second one is observed which in fact does not exist in the original
spectra! The appearance of spurious frequencies as mirror reflections with respect to
the Nyquist frequency is called aliasing or folding back effect, e.g., if fN = 4 f0 is
the Nyquist frequency, then the sixth harmonic reflects against fN with a frequency
difference ∆ f = f6 − fN = 2 f0 and is visible in the spectrum as the second harmonic.
Generally, the folding back effect should be eliminated because spurious harmonics
can influence real harmonics for more complex signals. However, if the problem deals
only with signals corresponding to the oscillating interface described by pure modes
one can try to use the folding back effect in the reconstruction process. Nevertheless,
this procedure should be applied with a special care because the risk of wrong signal
reconstruction is relatively high.

3.3.2. simple genetic algorithm

Although a genetic algorithm (GA) is not the fastest method which can be applied
to the identification of the dominant mode in the oscillating interface it is presented
here to show its main idea and important steps of its implementation. A specific termi-
nology associated with genetic algorithms is also clarified , e.g. genome/chromosome,
population, generation, etc.

The genetic algorithm is a method for solving optimization problems that tries to
simulate natural selection, the process that drives biological evolution. The genetic al-
gorithm repeatedly modifies a population of individual solutions. At each step, the
genetic algorithm selects individuals at random way from the current population (par-
ents) and uses them to produce the next generation (children). Over successive gener-
ations, the population evolves toward the best solution defined as the minimum/max-
imum of predefined cost function. The genetic algorithm uses three main operators at
each step to create the next generation from the current population:

• Selection operator, which selects the individuals that contribute to the population
at the next generation,

• Crossover operator, which combines two parents to form children for the next
generation,

• Mutation operator, that applies random changes to individual parents to form
children.

To apply genetic algorithms it is necessary to think first about the genome/chromo-
some representation which corresponds to the problem. Each genome/chromosome
instance represents a single solution of the problem so it is up to the user to define
which parameters should be included in the representation and how they should be
coded. Next, genetic operators listed above have to be defined to determine how the
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evolution should run. At the end, the objective/cost function must be defined to de-
termine how good or bad is the individual solution (genome/chromosome) in the
evolution process. Usually, cost functions are not used in the genetic algorithm di-
rectly. Instead of direct using of cost values delivered by cost functions, GA uses so
called fitness function which scales raw costs to find the fitness of genomes for mating.
There are many types of genetic algorithms. In the analysis, a standard simple genetic
algorithm (SGA) described in [49] is applied. The simple genetic algorithm uses non-
overlapping populations and optional elitism. Elitism ensures the propagation of the
best genome (solution) between generations without disruption by crossover or mu-
tation operator. The default selection operator in SGA is the roulette wheel selection
where the probability of selection is proportional to a fitness score of the individual
genome. In the standard SGA the genome is represented as a string of bits. SGA uses
a single point crossover operator, i.e., a single crossover point on two genome strings
(parents) is selected and all data beyond that point is swapped between them produc-
ing two new genome strings (children). The crossover operator is defined by crossover
probability.pc Typical values of pc are in the range between 0.4 and 0.9. If pc = 0.5 then
half of the new population is formed by selection and crossover and half by selection
only. The mutation operator checks every bit position in the genome, reversing the bit
value depending on the mutation probability pm. Typical value of the mutation proba-
bility is of the order 0.001, but as all parameters in GA it is problem dependent. Other
typical values of pm can be estimated as pm ∼ 1/L or pm ∼ 1/N

√
L taking into account

the bitwise genome length L and the number of genomes N in the population [25].
In the proposed implementation of SGA, a C++ library of genetic algorithms GAlib

created at the Mechanical Engineering Department of MIT [133] is applied. GAlib in-
cludes tools for using genetic algorithms to do optimization in any C++ program using
any representation and any genetic operators. The GAlib source code is not in the pub-
lic domain, but it is available at no cost for non-profit purposes.

To solve the identification problem of the dominant mode in the oscillating interface
between two conducting fluids using the simple genetic algorithm it is necessary to
define the genome corresponding to a single solution of the forward problem described
in Section 3.2.3.. The genome must contain enough information about the interface
and the sensors so that the forward problem can be solved by means of TFEM3D.
In the considered problem, a simple generic binary genome GABin2DecGenome from
GAlib is applied. The genome implements the traditional method of converting binary
strings to decimal values based on binary-to-decimal mapping. To use this genome, it
is necessary to specify how many bits will be used for the representation of chosen
parameter together with the range of mapped parameter values.

The representation of various dominant interface modes in SGA can be expressed
through their indexes (radial and azimuthal) and corresponding amplitudes. In fact,
it is not necessary to code both mode indexes independently. It is more effective to
substitute the double index of the mode ηij with the single index k = (i− 1)N + j− 1,
where N is the number of available interface radial modes, and then use it in SGA.
The index k is mapped on a binary string with a length L of 4 bits. It allows to code
an index for maximum 16 interface modes. In the analysis, according to the previous
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section, the range of interface modes is restricted to the first 3 azimuthal and the first 4
radial numbers, i.e., ηij : i = 1 . . . 3, j = 1 . . . 4. The range of mapped index k in this case
is set to [0, 11]. The elevation amplitude of the interface is coded in a binary string of the
same binary length as the string used for the index k. The amplitude range is defined
as [Amin, Amax] = [4.0 mm, 16.0 mm] to cover all expected amplitudes of the oscillating
interface. The amplitude resolution δA is equal to δA = (Amax − Amin)/(2L − 1) =
(16− 4)/15 = 0.8 mm. As it can be seen, the amplitude resolution is not very high.
The reason for choosing so short binary string for the amplitude representation is the
fact that the identification of the dominant mode should be done as quickly as possible
even at the expense of the amplitude estimation accuracy. The precise value of the
amplitude can be estimated later by a different method when the dominant mode of
the interface is already found e.g. by the direct searching method.

To illustrate a structure of applied genomes, the sample genome for the interface
mode η13 oscillating with the amplitude A13 = 7.2 mm is shown. The index k of mode
η13 is equal to k = (1− 1)4 + 3− 1 = 2 and is coded as ’0010’ binary string. This is
the first part of the used genome. The binary code of the amplitude is calculated using
formula: int[(A13 − Amin)/δA] = int[(7.2 − 4.0)/0.8] = 4 = 01002 and is stored
as ’0100’ binary string. This is the second part of the genome. After concatenation
of both strings, the binary genome ’0010 0100’ representing the mode η13 is ready
to use in SGA. It is obvious how to construct the reverse decoding procedure of the
interface mode indexes ij and the corresponding amplitude from the binary genome
representation.

After construction of the genome, a cost function (objective function) has to be de-
fined to evaluate a goodness of individual solutions, i.e., the function for which smaller
values correspond to better fitting solutions. The following example will show how im-
portant is to select the appropriate definition of the cost function.

Two cost functions CF1 and CF2 with different way to take account of the magnetic
flux density components are defined, namely:

CF1 =

√√√√√√√√√ ∑
c=r,z

Ns

∑
i=1

(Bci − B0
ci)

2

Ns

∑
i=1

(B0
ci)

2

100% (3.47)

CF2 =

√√√√√√√√√
∑

c=r,z

Ns

∑
i=1

(Bci − B0
ci)

2

∑
c=r,z

Ns

∑
i=1

(B0
ci)

2

100% (3.48)

where index c denotes radial (r) or axial (z) component, Ns is the number of used
sensors, and Bci, B0

ci are calculated and reference components of the magnetic flux
density at sensor positions, respectively. Bci values correspond to the actual genome
and are calculated using TFEM3D program described in Section 3.2.3.. The reference
magnetic flux components B0

ci are simulated or measured and relate to the maximum
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elevation of the oscillating interface which should be identified. In the cost function CF1,
the influence of all components of the magnetic flux density is taken into account with
equal weights regardless of their absolute values. In the cost function CF2 the impact
of individual components is reduced by grouping them together in the numerator and
denominator.

Table 3.4 shows sample signals measured by 8 sensors evenly distributed around
the cylindrical cell (Fig. 3.15) produced by the oscillating interface defined by one
dominant mode and corresponding to its maximal elevation. The reference signal is
calculated for the interface mode η33 and the amplitude A = 7 mm using the fine FEM
cell model (dE = 1 mm). Signals in simulation 1 (mode η32, A = 5.2 mm) and 2 (mode
η33, A = 7 mm) are calculated applying the fast FEM cell model (dE = 3 mm).

Table 3.4: Signals at sensors positions for sample dominant modes corresponding to the
maximum interface elevation (in nT)

Sensor
Mode 33 Mode 32 Mode 33

Reference Simulation 1 Simulation 2

Br Bz Br Bz Br Bz

1 -1.39 -0.09 -1.55 -0.05 -1.24 -0.04

2 3.66 0.13 6.92 0.03 3.58 -0.16

3 -6.38 0.27 -10.00 0.15 -6.33 0.24

4 6.15 -0.43 7.06 -0.24 5.31 -0.19

5 0.41 -0.04 1.04 -0.01 0.38 -0.09

6 -7.38 0.41 -8.89 0.23 -6.60 0.17

7 7.37 -0.14 10.50 -0.08 7.19 -0.22

8 -2.43 -0.10 -5.07 -0.01 -2.28 0.21

CF1[%] 65.8 79.7

CF2[%] 46.0 9.0

Cost functions for signals obtained in the simulation 1 and 2 are calculated according
(3.47) and (3.48). The received results (Table 3.4) show that the use of the cost function
CF1 may lead to the elimination of the correct mode in the identification process be-
cause C32

F1 < C33
F1 whereas the use of the cost function CF2 performs a correct validation

of the analyzed modes C32
F2 > C33

F2. For this reason, in further considerations, the equa-
tion (3.48) will be used as the basic definition of the cost function in the validation
procedures.

Since the cost function CF has to be calculated many times during the evaluation of
SGA, the execution time of all procedures involved in that process, mainly TFEM3D,
has to be extremely minimized. In the simplest way, this can be achieved by using
appropriate FEM models of the cylindrical cell. If the finite element mesh is too dense,
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the number of unknowns of the global equation system will grow up and this will
result in increasing of the execution time of TFEM3D. On the other hand, if the finite
element mesh is too simple, the results are received fast but with a low accuracy. In
TFEM3D, the generation of finite element mesh is controlled using two parameters (see
Section 3.2.3.): dE, which defines the maximum size of 2D elements used in a generation
of 2D cylindrical base slices and NSL, the number of slices which determines density
of 3D finite elements in the axial direction. The parameter dE can be estimated if you
notice that in the modeling of interface shapes, the approximation of Bessel functions
in (3.24) is more critical than the approximation of azimuthal trigonometric functions.
Using this fact, first, it is calculated the distance of the first maximum of the highest
radial interface mode used in the SGA to the z-axis, i.e., the r-position of the first
maximum of ηij for j = 4. Then, under assumption that at least 3 finite elements are
necessary to cover this distance, the limit value of dE can be estimated. The limit value
of dE found for the cylindrical cell of radius R = 25 mm and the interface radial mode
of order 4 is equal to dE ≈ 2.4 mm. The necessary number of slices NSL can be estimated
from numerical experiments by observation how the quality of simulated magnetic
signals is changing with decreasing of NSL. It is found that using a combination of
NSL = 16 and dE = 3 mm assures good compromise between the quality and the speed
of calculations. For these parameters, the finite element mesh used in SGA consists of
Ne = 98560 tetrahedral elements of the first order and Np = 22215 nodes which results
in average calculation time of the cost function for a single genome of around 0.2 s.

Before the first start of the SGA, the size of genetic material subjected to the evolution
has to be defined, in other words, the number of genomes included in the population
has to be given. If the population size is too small, the genetic algorithm may not
explore enough of the solution space to find good solutions. Increasing the population
size enables the genetic algorithm to search more variants and thereby obtain better
results. However, the larger the population size, the longer the genetic algorithm takes
to analyze each generation. Following [49], the appropriate population size Npop for
binary genomes can be estimated as:

Npop ∼ O
(

l
m

2m
)

(3.49)

where l is a binary length of applied genome string and m denotes an average number
of bits per parameter. In the analyzed problem, l is equal to 8 (2× 4 bits) and m = l/2 =
4 which results in the population size Npop = 2 · 24 = 32. Usually, the population size
received from (3.49) is over-estimated and it can be reduced at least by factor 2.

Further, some results of the interface dominant mode identification performed by
means of the simple genetic algorithm are presented. First, the reference data have been
prepared by calculating components of the magnetic field at the sensor positions for the
sensor ring with 8 2D-magnetometers (Fig. 3.14) located at z = 0 using the fine finite
element model (dE = 1 mm, NSL = 50 : Ne = 3131100, Np = 681166). The following
parameters of the cell model are used: h = 100 mm - cylinder height, R = 25 mm -
cylinder radius, σ2 = 3.46 MS/m - lower fluid conductivity, σ1 = 100 S/m - upper
fluid conductivity, and J0 = 509.3 A/m2 = 1 A/(πR2) - impressed current density at
z = h/2. The radial and axial sensors are modeled as solenoids with the length of
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15 mm and the radius equals 1.5 mm. The distance of solenoid centers to the wall of
the cell is equal to 16 mm and 17 mm for radial and axial sensors, respectively. In all
simulations, the azimuthal position of the sensor ring is set to α0 = 0.

Reference data have been prepared for a set of distorted interfaces described by vari-
ous single modes (ηij : i = 1 . . . 3, j = 1 . . . 3) with the same elevation amplitude equals
A0 = 7 mm. Additionally, the noisy data were simulated by adding a random white
noise to the calculated magnetic flux density components with the level of 5% and
10% of the respective component maximum. During the SGA identification, cost func-
tion values (3.48) are calculated using TFEM3D and the reduced finite element model
(dE = 3 mm, NSL = 16). After the identification of the dominant mode, to improve
the accuracy of found amplitude, the precise amplitude tuning using a simple direct
search method with a constant step equals dA = 0.1 mm is performed.

Tables 3.5, 3.6, and 3.7 show results of identifications for the following SGA param-
eters: Npop = 32/16/8 - population size, pm = 0.125 - mutation probability, pc = 0.8 -
crossover probability.

In all simulations, two components of the magnetic flux density (Br, Bz) are used.
Start populations in all simulations are chosen in a random way. To terminate the SGA
process, two criteria are used: the maximum number of generations Ngen (set to 50)
and the cost function threshold Th (set to 10%). If the cost function value is below
the defined threshold or the number of generations reaches the maximum, the SGA
process is terminated.

In all tables, RMode denotes the reference dominant mode in the oscillating interface
simulated by the fine finite element model whereas IMode is the mode identified by
the SGA. A is the amplitude of the identified dominant mode. δA is the relative error
of the estimated amplitude calculated as: δA = 100%(A− A0)/A0. Values of the cost
function CF are calculated for estimated amplitudes after tuning according to (3.48).
In columns CPUnn, total time of SGA calculations including the amplitude tuning for
the population size equals 32, 16 and 8 is presented, respectively.

Table 3.5: SGA dominant mode identifications - Noise = 0%

RMode IMode A[mm] δA[%] CF[%] CPU32[s] CPU16 [s] CPU8[s]

11 11 7.0 0.0 0.36 19.7 16.2 9.2

12 12 7.1 1.4 2.50 56.6 14.6 14.7

13 13 7.2 2.8 2.85 37.8 14.3 58.2

21 21 7.1 1.4 0.37 10.2 19.3 18.7

22 22 7.9 12.9 2.46 14.8 10.1 7.2

23 23 7.8 11.4 5.32 75.6 16.1 52.4

31 31 7.1 1.4 0.48 75.5 84.4 12.3

32 32 7.6 8.6 2.42 20.2 67.4 13.3

33 33 7.6 8.6 6.41 20.3 89.9 36.1
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Table 3.6: SGA dominant mode identifications - Noise = 5%

RMode IMode A[mm] δA[%] CF[%] CPU32[s] CPU16[s] CPU8[s]

11 11 7.0 0.0 2.28 19.7 16.2 9.2

12 12 7.1 1.4 3.24 102.8 14.6 14.7

13 13 7.2 2.8 2.95 65.9 14.3 58.1

21 21 7.1 1.4 1.81 10.2 19.3 18.7

22 22 8.1 15.7 2.80 14.2 9.5 7.8

23 23 7.9 12.9 6.32 94.1 46.6 52.1

31 31 7.2 2.8 2.32 19.2 61.9 57.8

32 32 7.5 7.1 2.98 19.9 43.9 13.6

33 33 7.6 8.6 5.85 20.3 87.3 36.1

Table 3.7: SGA dominant mode identifications - Noise = 10%

RMode IMode A[mm] δA[%] CF[%] CPU32[s] CPU16[s] CPU8[s]

11 11 7.1 1.4 4.91 19.6 15.4 14.7

12 12 7.0 0.0 5.09 47.8 16.0 12.8

13 13 7.3 4.3 4.80 38.0 14.8 58.6

21 21 7.2 2.8 3.56 9.9 24.2 32.8

22 22 8.0 14.3 5.15 14.5 10.0 7.5

23 23 7.9 12.9 7.13 130.8 69.0 28.7

31 31 6.8 -2.8 2.54 57.6 35.9 13.2

32 32 7.2 2.8 4.18 19.1 23.8 14.5

33 33 7.5 7.1 5.95 20.0 80.7 40.3

The results show that all performed SGA simulations were positive with a correct
identified dominant mode. The elevation amplitude is estimated quite good (relative
amplitude error δA < 3%) for interfaces described by modes with spatial frequency
spectra lying under Nyquist frequency (Section 3.3.1.), i.e., by modes η11, η13, η13, η21,
and η31. For interfaces described by remaining modes, found elevation amplitude is
over-estimated which is, in fact, not so critical as the under-estimation. The correlation
can also be observed between cost-functions values and the applied noise level, i.e.,
higher noise level results in higher minimum cost-functions values. Roughly, it can be
said that the minimum values of the cost-function are equal to about 50% of the noise
level for most identified dominant modes. However, this conclusion is only true for
noisy signals in the presence of white noise.
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Several other probability values of mutation and crossover have been tested with the
elitism switched on or off. For the analyzed problem, the most significant was a suit-
able choice of the mutation probability. If the mutation probability is not big enough
the diversity of genomes in successive generations is too small especially concerning
mode indexes and results in a false dominant mode identification. Choosing the mu-
tation probability according criterion: pm = 1/L, where L is the bit length of used
genomes, was the best choice. The choice of the crossover probability is less critical.
It affects only the calculation time but not the correct identification of the dominant
mode. Switching off the elitism, i.e., switching of the propagation of the best genome
to the next generation has similar effect.

The analysis of the influence of the population size on the calculation time (CPU)
shows that using criterion (3.49) provides over-estimated population size. In the ana-
lyzed problem, the population size can be chosen even 4 times smaller maintaining the
positive identification of the dominant mode and reducing the calculation time. An av-
erage execution time of one identification of the interface dominant mode is calculated
as the average time of all performed simulations (Noise = 0, 5, 10%) and is equal to
39.0, 34.6, and 28.0 s for Npop = 32, 16, and 8, respectively.

Using in the SGA only Br component of the magnetic flux density instead of two
components (Br, Bz) does not change significantly the results presented in the above
tables. Only minima of cost-functions reach smaller values which is obvious if you
look at the position of the sensor ring located at z = 0. At this position, Br component
is much greater than Bz one (see Fig. 3.11), which means, its contribution to the cost
function (3.48) is dominant. Thus, if the sensor ring is located at z = 0, it is enough to
use only radial component of the magnetic flux density for identifying the dominant
mode in the oscillating interface.

The presented implementation of the identification of the dominant mode in the os-
cillating interface has one restriction: the exact azimuthal position of the sensor ring
in relation to the cylinder cell coordinate system has to be known. In numerical simu-
lations, this is not a problem because the correct position of the sensor ring according
to the simulated signals can always be set. However, in a real experiment it is not so
easy to find the precise azimuthal position of the sensor ring. Genetic algorithm makes
it possible to find the solution to the problem of finding the azimuthal position of the
sensor ring in a quite simple way. Simply, the actually used genome has to be expanded
about one additional parameter with the information about the azimuthal position of
the sensor ring. For this purpose, the binary string of encoded azimuthal angle with a
length of 4 bits is added to the actual genome. The range of azimuthal angles is set to
[0, 45°] which covers the angular distance between two successive sensors on the sensor
ring with an angular resolution δα equals 3°.

Table 3.8 presents sample results of identifications of dominant modes for simulated
noisy magnetic flux density signals (Noise = 5%) calculated for the azimuthal position
of the sensor ring equals α0 = 20°. The modified SGA described above has been applied
with the following parameters: Npop = 8, pm = 0.2, pc = 0.8, and Ngen = 50. In the
column α, the azimuthal positions of the sensor ring found by the modified SGA are
given.
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Table 3.8: SGA identifications - unknown azimuthal position of sensors - Noise = 5%

RMode IMode A[mm] α[◦] CF[%] CPU8[s]

11 11 7.0 21.0 1.77 30.0

12 12 7.1 21.0 4.00 51.6

13 13 7.3 21.0 3.88 120.7

21 21 7.1 21.0 2.78 31.0

22 22 7.3 21.0 4.30 56.2

23 23 7.7 18.0 9.25 120.5

31 31 7.1 21.0 5.09 118.8

32 32 7.5 21.0 4.88 73.1

33 33 7.3 21.0 8.39 120.8

All found azimuthal angles are close to the reference angle α0 = 20° within the accu-
racy of the azimuthal angle resolution δα = 3°. The average identification time is equal
to about 80 s which is almost 3 times longer than the average time of identifications
with known position of the sensor ring.

So far, after the SGA, the simple direct search method is additionally applied for
the amplitude correction to find the amplitude with the minimum cost function (3.48).
However, this procedure is not effective if the azimuthal position of the sensor ring
is unknown. To improve the identification quality in a better way, the SGA has to be
applied once more. It is enough to modify the structure of the genome, because in the
second SGA run, the dominant mode is already known. Additionally, the resolution of
searching parameters can be improved by narrowing ranges of the searching amplitude
and the azimuthal angle. The genome consists now of two binary strings with the
length of 4 bits each corresponding to the amplitude and the azimuthal angle. The
ranges of parameters can be selected on the basis of identification results and set to
[6.5 mm, 8 mm] and [18◦, 20◦] for the amplitude and the azimuthal angle, respectively.
Narrowing SGA search scopes results in better resolution of sought parameters, i.e.,
δA = 0.05 mm and δα = 0.2◦.

Table 3.9 presents results of amplitude and azimuthal position searching for sample
set of oscillating interfaces with added 5% white noise using the above formulated
SGA. It can be observed that all cost functions reach smaller values than in Table 3.8.
For almost all modes, the rule saying that in the presence of white noise minimal
values of the cost function are equal about 50% of the introduced noise can be applied.
It can also be noticed that found amplitudes remain almost unchanged compared to
the previous implementation of SGA whereas the azimuthal angles are closer to the
reference azimuthal position of the sensor ring (α0 = 20◦).
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Table 3.9: Precise SGA identifications of amplitude and azimuthal angle - Noise = 5%

IMode A[mm] α[◦] CF[%] CPU8[s]

11 7.0 20.8 1.68 7.8

12 7.1 20.2 3.05 119.6

13 7.3 20.2 2.78 117.6

21 7.1 20.2 1.04 16.9

22 7.5 19.8 2.32 117.1

23 7.5 19.8 8.16 115.0

31 7.1 20.2 1.96 16.2

32 7.5 20.0 1.81 7.4

33 7.3 20.0 5.81 116.6

Parameters of test signals and signals found by the SGA together with the corre-
sponding cost functions are presented in Table 3.10 to explain why the precise SGA
finds other values than the reference parameters A0 and α0. Test signals are simulated
for exactly the same parameters as in the case of reference signals using like in the SGA
reduced finite element meshes (dE = 3 mm, NSL = 16). Reference signals are calculated
using fine finite element meshes (dE = 1 mm, NSL = 50). As it can be seen, the values
of the cost function C0

F are greater than zero for all test signals. This is the result of
using different numerical models for the test and the reference signals. Since SGA is
seeking for the minimum of the cost function, found combination of the interface am-

Table 3.10: FEM models - comparison of cost functions - without noise

Mode
Test SGA

A0[mm] α0[
◦] C0

F[%] A[mm] α[◦] CF[%]

11 7.0 20.0 0.37 7.0 20.0 0.37

12 7.0 20.0 3.24 7.1 20.2 2.62

13 7.0 20.0 5.52 7.3 20.2 2.84

21 7.0 20.0 1.14 7.1 20.0 0.26

22 7.0 20.0 3.57 7.4 19.8 1.41

23 7.0 20.0 9.85 7.6 19.2 7.36

31 7.0 20.0 1.82 7.1 20.0 0.44

32 7.0 20.0 3.63 7.6 20.0 2.21

33 7.0 20.0 6.35 7.4 19.8 5.64



3.3. interface shape reconstruction - dominant mode identification 87

plitude and the azimuthal position of the sensor ring ensures that the corresponding
cost function is lower or at least equal to C0

F. Of course, if the resolution of the searching
process is small enough. However, this does not mean that the found combination must
be exactly the same as the combination applied in simulations of reference signals. In
summary, it can be concluded that both the amplitude of the identified dominant mode
and the azimuthal position of the sensor ring are determined fairly accurately despite
of quite different numerical models used in the SGA and reference simulations.

Finally, the following three step strategy for the identification of the dominant mode
identification in the oscillating interface between two conducting fluids by means of
the simple genetic algorithm can be formulated:

1. Run SGA with the predefined genome and seeking parameters to identify the
dominant mode.

2. Fix the found dominant mode, reduce the genome, and set new seeking parame-
ters using rough results from the previous step.

3. Run SGA once more to find the accurate amplitude and the azimuthal position
of the sensor ring.

At the end, it can be concluded that applied simple genetic algorithm accurately
identifies dominant modes in the oscillating interface but the execution time of a single
identification is relatively long.

3.3.3. direct search method

In this section, the direct search method (DS) adjusted to the identification of the dom-
inant mode in the oscillating interface is presented [157]. For the known azimuthal
position of the sensor ring relative to the oscillating interface, the idea of the direct
search method is quite simple. First, a pool of interface dominant modes which should
be analyzed has to be defined, e.g. {ηij : i = 1 . . . M, j = 1 . . . N}, where M and N are
the highest available azimuthal and radial mode indexes, respectively. Next, a range of
possible amplitudes of the oscillating interface has to be determined: A ∈ 〈Amin, Amax〉.
At the end, for every mode from the pool, the minimum of the cost function defined by
(3.48) is searched in the predefined amplitude range using the golden section search
[6, 68]. The golden section search is a technique which enables to find the extremum
of a unimodal function of one variable by successively narrowing the intervals inside
which the extremum is known to exist. Its name comes from the fact that the algorithm
maintains the function values for triples of points whose distances form a golden ratio.
After evaluation of all modes from the pool, the global minimum of all found cost func-
tion minimums is searched. The found global minimum defines the dominant mode
of the oscillating interface and its amplitude. A straightforward implementation of this
algorithm results unfortunately in longer execution times comparing to the SGA proce-
dure presented in the previous section. The algorithm can be easiely accelerated after
analyzing the typical distribution of the cost function (3.48) for all modes from the pool
versus amplitudes of interface oscillations (Fig. 3.21). Instead of immediate searching
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Fig. 3.21: Distribution of cost function for various interface modes versus amplitude

for the minimum of the cost function for all modes from the pool in the given range
of amplitudes, the values of cost function CF0 are calculated for one predefined value
of the amplitude only, e.g. for the lower limit of the amplitude range (see red line in
Fig. 3.21). All calculated CF0 values are stored in a vector V. Then, using the vector V,
modes from the pool are sorted in ascending order by placing at the first position of
the list the mode with the smallest cost function (V1 : ηmn → min CF0). Having sorted
modes, for every mode from the list, the search for the minimum cost function can be
started in the given range of amplitudes using the golden section approach (Fig. 3.22).

Fig. 3.22: Distribution of cost function versus amplitude for one mode
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Additionally, using as a termination criterion the cost function threshold value CTh
F

below which the process of scanning over modes should be stopped, a modified di-
rect search algorithm (MDS) is obtained. The MDS performance is in most cases much
faster than the simple DS version. Selection of the appropriate value of CTh

F is impor-
tant because if the threshold value is too small the process will not be interrupted and
in consequence the entire list of modes will be searched. In turn, the MDS process of
finding of the dominant mode will not be accelerated. For simulated signals, the choice
of the threshold is quite obvious because as it was stated in the previous section, the
cost function values are correlated with the noise and it is enough to accept the value
of the added noise level as the threshold value CTh

F . In the case of measurement signals,
the choice is not so obvious and usually requires a few additional simulations in order
to find its proper value.

Tables 3.11, 3.12, and 3.13 show sample test results of dominant mode identifica-
tions in the oscillating interface by means of the MDS algorithm with the cost function
threshold equals CTh

F = 10 %. As the reference data, the simulated magnetic flux
density signals are used. The signals are calculated by means of FEM at the sensors
located on the sensor ring using the same model of the cylindrical cell as presented
in the previous section and applying the fine FE mesh (dE = 1 mm). For all simula-
tions, the azimuthal position of the sensor ring is set to α0 = 0◦ while the amplitude
of the oscillating interface is set to A0 = 7 mm. In all tables RMode gives the reference
dominant mode in the oscillating interface simulated by the fine finite element model
whereas IMode is the identified dominant mode. A is the amplitude of the dominant
mode found by the MDS and δA denotes the relative error of the estimated amplitude
calculated as: δA = 100%(A − A0)/A0. Results of all identifications found with the
MDS are the same as the results received by means of the simple genetic algorithm
described in the previous section (see Tables 3.5, 3.6, and 3.7 for comparison). From
average computation time for both methods, it can be noticed that the modified direct
search procedure is about 35% faster than the simple genetic algorithm.

Table 3.11: MDS dominant mode identifications - Noise = 0%

RMode IMode A[mm] δA[%] CF[%] CPU[s]

11 11 7.03 0.38 0.09 11.8

12 12 7.06 0.93 2.42 11.9

13 13 7.21 2.95 2.85 21.8

21 21 7.07 1.04 0.08 11.8

22 22 7.93 13.22 2.46 11.8

23 23 7.84 11.96 5.30 24.3

31 31 7.13 1.88 0.19 11.7

32 32 7.62 8.86 2.42 11.7

33 33 7.56 8.02 6.40 15.9



90 interface between two electrically conducting fluids

Table 3.12: MDS dominant mode identifications - Noise = 5%

RMode IMode A[mm] δA[%] CF[%] CPU[s]

11 11 6.99 -0.10 2.28 11.8

12 12 7.14 2.00 3.16 12.1

13 13 7.18 2.59 2.93 21.9

21 21 7.05 0.74 1.69 12.0

22 22 8.14 16.27 2.80 11.9

23 23 7.90 12.92 6.32 24.4

31 31 7.20 2.84 2.32 11.8

32 32 7.51 7.24 2.98 11.8

33 33 7.56 7.95 5.83 16.0

Table 3.13: MDS dominant mode identifications - Noise = 10%

RMode IMode A[mm] δA[%] CF[%] CPU[s]

11 11 7.05 0.74 4.87 12.0

12 12 6.98 -0.29 5.08 12.1

13 13 7.27 3.84 4.76 21.9

21 21 7.17 2.48 3.54 11.9

22 22 8.04 14.84 5.15 11.9

23 23 7.88 12.62 7.13 24.6

31 31 6.85 -2.20 2.46 11.8

32 32 7.18 2.52 4.18 11.8

33 33 7.46 6.54 5.93 16.1

The MDS operates correctly only when the relative azimuthal location of the sensor
ring in a relation to the coordinate system with the oscillating interface is known. If
this location is unknown, the identification of the dominant mode in the oscillating
interface usually fails, often leading to wrong mode recognition and wrong amplitude
estimation. Generally, the elimination of this limitation in a signal domain is compli-
cated and time consuming, so that the MDS method ceases to be competitive in relation
to SGA. However, for a certain class of signals this limit can be relatively easy removed
if the analysis is switched to the spatial frequency domain (see Section 3.3.1.) because
the amplitude spectra of signals are insensitive to the angular shift of signals (shift
theorem of Fourier transform [14]).

Further, the analysis is restricted to the class of signals which can be perfectly re-
constructed from the Fourier spectrum calculated for Ns sensors (Section 3.3.1.). Some
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additional signals with Fourier spectra significantly below the Nyquist frequency have
also been added to this class, although the perfect reconstruction is not possible for
them. For the system consisting of 8 sensors (Ns = 8), this class contains signals cor-
responding to the following modes: ηij ∈ {η11, η12, η13, η22, η31, η21, η33} (see Fig. 3.19

and 3.20).
To apply effectively the MDS in the spatial frequency domain the cost function (3.48)

has to be redefined by introducing directly the amplitude spectra of signals instead of
the signals themselves. The following spectral cost function C̃F is introduced:

C̃F =

√√√√√√√√√
∑

c=r,z

Ns/2

∑
i=0

(
∣∣∣Bi

c

∣∣∣− ∣∣∣Bi
c0

∣∣∣)2

∑
c=r,z

Ns/2

∑
i=0

∣∣∣Bi
c0

∣∣∣2 100% (3.50)

where
∣∣∣Bi

c

∣∣∣ and
∣∣∣Bi

c0

∣∣∣ are amplitudes of ith harmonics of measured and reference signals,
respectively.

Tables 3.14, 3.15, and 3.16 show results of the dominant mode identifications by
means of the modified direct search algorithm using amplitude spectra of signals
(MDS-AS) performed for unknown azimuthal positions of the sensor ring. In calcu-
lations of the reference signals, the same FEM model of the cell as described above
is used under assumption that the azimuthal position of the sensor ring is shifted by
an angle α0 = 20◦ relative to the coordinate system of the oscillating interface. Noisy
signals are created by adding to original signals a pseudo-random white noise of the
level N%.

It can be noticed that in all simulations the dominant mode is correctly identified. In
most cases, the amplitude of the oscillating interface is found with the error δA less
than 10% and is usually overestimated. The largest amplitude errors occur for signals
for which it is not possible to determine the correct amplitude spectrum, i.e., for signals
corresponding to modes η32 and η33.

Table 3.14: MDS-AS identifications - unknown azimuthal ring position - Noise = 0%

RMode IMode A[mm] δA[%] α[◦] C̃F[%] CPU[s]

11 11 7.03 0.38 20.0 0.10 8.9

12 12 7.06 0.93 19.9 2.54 8.9

13 13 7.21 2.95 19.9 3.04 14.0

21 21 7.04 0.60 19.9 2.45 8.9

31 31 7.13 1.86 20.0 0.20 8.7

32 32 7.61 8.75 20.0 2.15 8.8

33 33 7.55 7.90 20.0 5.71 13.0
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Table 3.15: MDS-AS identifications - unknown azimuthal ring position - Noise = 5%

RMode IMode A[mm] δA[%] α[◦] C̃F[%] CPU[s]

11 11 7.03 0.49 20.7 0.56 8.9

12 12 7.02 0.33 20.2 1.82 8.9

13 13 7.24 3.48 20.0 2.43 18.8

21 21 7.05 0.67 20.2 2.73 8.8

31 31 7.10 1.38 20.1 1.74 8.7

32 32 7.54 7.65 20.2 1.43 8.8

33 33 7.50 7.20 20.1 5.64 12.9

Table 3.16: MDS-AS identifications - unknown ring position - Noise = 10%

RMode IMode A[mm] δA[%] α[◦] C̃F[%] CPU[s]

11 11 7.04 0.60 20.7 2.64 8.9

12 12 6.95 -0.65 20.6 2.59 8.9

13 13 7.26 3.73 19.9 4.70 14.0

21 21 6.98 -0.33 20.2 4.44 8.9

31 31 6.92 -1.10 20.6 2.47 8.7

32 32 7.80 11.37 20.2 1.27 8.8

33 33 7.50 7.13 19.9 6.36 13.0

The use of MDS-AS allows also to find easily the azimuthal position α of the sen-
sor ring. The azimuthal position of the ring is simply equal to the subtraction of
the phase shifts corresponding to the main Fourier harmonics found for the iden-
tified and the input signals. The phase shift α of the ith harmonic is calculated as:
α = arctan(=(Bi

r)/<(Bi
r)) using imaginary =(Bi

r)) and real <(Bi
r)) part of the har-

monic Bi
r found during the spatial Fourier transform of the signal. It can be observed

that all azimuthal positions of the sensor ring estimated in that way are close to the
reference position equals 20◦.

It is also noteworthy that the average identification time using the MDS-AS equal to
10.5 s is about 30% shorter than for the MDS (14.8 s).

In summary, it can be concluded that the direct search methods for problems with
relatively small search space are tools that can be a competitive alternative to stochastic
methods in terms of computation time.
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3.3.4. cross-correlation approach

In this section, the approach using the cross-correlation of signals (CC approach) dur-
ing the identification of dominant mode in the oscillating interface is presented [151].

The cross-correlation (CC) is a measure of similarity of two waveforms as a func-
tion of a shift applied to one of them. It is also known as a sliding dot product or
sliding inner-product. The cross-correlation is commonly used for searching a long-
duration signal for a shorter, known feature. To characterize a correlation between two
discrete data sets x = {x1, . . . , xN} and y = {y1, . . . , yN} usually the linear correla-
tion coefficient r (also called the product-moment correlation coefficient, or Pearson’s
r coefficient) is used [111]:

r = ∑N
i=1(xi − x)(yi − y)√

∑N
i=1(xi − x)2

√
∑N

i=1(yi − y)2
(3.51)

where x and y are the mean values of the x and y respectively.
In the identification of the dominant mode, the cross-correlation applied to signals

defined in a spatial domain around the cylindrical cell is used. The spatial shifting of
signals is realized using their azimuthal periodicity. The cross-correlation is calculated
between the signal produced by the analyzed interface and all reference signals col-
lected in a pre-defined database. The database should contain signals corresponding
to all possible dominant modes which can be expected in the oscillating interface, i.e.,
{ηij: i = 1 . . . M, j = 1 . . . N}. As before, the signals correspond to the maximum eleva-
tion of the interface. For every mode from the database, the reference signals are cal-
culated using a grid of virtual sensors regularly distributed around the cell (Fig. 3.23).
The number of virtual sensors equals NV in one grid row is not limited by the possi-
bility of their physical implementation, so its choice should give signals with a high

Fig. 3.23: Distribution of virtual sensors around the cell (360× 41) and magnetic flux density
components (Br, Bz) calculated for the interface mode η21 and amplitude A = 7 mm
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spatial resolution to enable precise azimuthal localization of shifted signals. In this case,
the number of virtual sensors is defined as NV = 360 what provides the resolution of
shifting signal equal to ∆α = 1/NV = 1◦.

The grid of virtual sensors should cover the interval of possible z-positions of the
measuring system allowing its exact localization in the z-direction, which determines
the number of grid rows NR. In the implemented system, the range of z-positions
of the sensor grid is set to z ∈< 10 mm, 90 mm > and the number of rows is equal
to NR = 41 which provides the resolution of the identification of the measurement
system z-position equals ∆z = 2 mm.

Having the grid of virtual sensors, signals corresponding to all modes ηij in the
database are calculated using amplitudes from a predefined range < Amin, Amax >
and assumed amplitude resolution ∆A, e.g. Amin = 2 mm, Amax = 16 mm, ∆A = 1 mm.
The number of various amplitudes NA ascribed to every mode in the database is equal
to NA = (Amax − Amin)/∆A + 1.

Figure 3.24 shows distributions of Br and Bz components of the magnetic flux den-
sity around the cell calculated for sample interface modes η11 and η12, and various
amplitudes using the grid of virtual sensors defined above, i.e., NV × NR = 360× 41.
It can be noticed that field distribution patterns vary considerably with the increase of
the oscillation amplitude, especially for modes with higher radial indexes.

In the first step of the cross-correlation approach, the index n0 of the row with NV
sensors is localized in the virtual grid for which the position zn is the closest to the
actual position of the measurement ring (z0):

n0 ← min ∀n=1...NR |zn − z0| (3.52)

In the second step, for every mode η = {ηij : i = 1 . . . M, j = 1 . . . N} and every
amplitude A = {Ak : k = 1 . . . NA} from the database, the virtual signals SV = {SV

i , i =
1 . . . NV} located at the row n0 are extracted. If zn 6= z0, the linear interpolation of
signals from adjacent rows is used, i.e., rows n0 and n0 − 1 for zn > z0, or rows n0 and
n0 + 1 for zn < z0.

Next, for every signal found in the second step, the azimuthal shift angle αm =

m∆α is searched ensuring the maximum value of the linear correlation coefficient r(m)
ij,k

between the measured signal S = {Si, i = 1 . . . NS} and the shifted database signal
SV

m = {SV
i , i = 1 + m . . . NV + m}, where m = 0 . . . NV (Fig. 3.25). Cross-correlation

coefficients r(m)
ij,k are calculated according to (3.51) using independently radial and axial

components of magnetic flux density signals as: r(m)
ij,k = r(m)

ij,k |r · r
(m)
ij,k |z.

All found maximums of cross-correlation coefficients together with the correspond-
ing mode index, the amplitude and the shift angle are stored in a structure C of size
M × N × NA. At the end, the structure C is sorted in a descending order using CC
coefficients. As a final result, the mode with the highest value of the cross-correlation
coefficient is given at the first position of C. This mode defines the signal from the
database best matching to the measured signal together with its amplitude and the
relative shift angle.



Fig. 3.24: Distributions of magnetic flux density components around the cylindrical cell for vari-
ous amplitudes and interface dominant modes: η11, η12
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Fig. 3.25: The principle of matching signals using cross-correlation coefficient: (1) signal corre-
sponding to the mode η12 and amplitude A = 7 mm read from the database, (2) best suited
signal - signal (1) shifted by α = 20◦, (3) signal measured using 8-sensors system. CC calculated

between signals (1) - (3): r(1−3)
12 = 0.83874, and between signals (2) - (3): r(2−3)

12 = 1.00000

Unfortunately, the use of cross-correlation coefficient only in the identification of
dominant mode in the oscillating interface with 8 sensors does not always ensure
the correct identification of the dominant mode, especially for interfaces defined by
higher dominant modes. For example, let the signal S = {Si, i = 1 . . . 8} be produced
by the interface described by the dominant mode η23 oscillating with the amplitude
A = 7 mm and simulated using the fine FEM model (dE = 1 mm). The sensor ring is
placed at z0 = 50 mm and rotated in the azimuthal direction about angle α = 20◦. The
cross-correlation coefficient of this signal and the signal corresponding to the mode
η23 (amplitude A = 7 mm, shift angle α = 20◦) stored in the database is equal to
r23 = 0.97512. In this case, the cross-correlation coefficient is not equal to 1.0 because
signals in the database are calculated using different FEM models, namely fast FEM
models (dE = 3 mm). The CC coefficient of the signal S with the signal from the
database corresponding to the mode η22 oscillating with the amplitude A = 11mm
and shifted by the angle α = 110◦ is equal to r22 = 0.99857, which is greater than in
the previous case (Fig. 3.26). This means that during the identification process the false
mode η22 must be selected instead of the correct one η23 because its correlation with the
measured signal is higher! Additionally, it should be noticed that the cross-correlation
coefficient is insensitive to absolute amplitudes of signals (compare signals in Fig. 3.26)
what prevents the accurate identification of the amplitude of oscillating interface.

Problems mentioned above can be eliminated by increasing the number of sensors
on the sensor ring. This results in the more accurate description of signals used during
the identification. However, it is difficult to realize this approach in practice because
of a small radius of the cylindrical cell (R = 25 mm) and the actual physical sizes of
sensors. An alternative way consists in adding a second co-axial sensors set parallel to
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(a) Br component.

(b) Bz component.

Fig. 3.26: Example of false interface identification using the CC coefficient: (1) signals for the
interface mode η23, A = 7 mm, and α = 20◦, (2) signals for the interface mode η22, A = 11 mm,
and α = 110◦, (3) measured signals for the interface mode η23, A = 7 mm, and α = 20◦. Signals
(1) and (2) are calculated using FEM models with dE = 3 mm, while signals (3) with dE = 1 mm.
Found false mode η22 corresponds to r22 = r0

22r1
22 = 0.99857 > r23 = r0

23r1
23 = 0.97512

the first one and shifted in z direction by distance ∆z. The choice of ∆z is significant
because the distance ∆z cannot be too small due to the construction limits and also not
too big due to the limited sensitivity of applied sensors. Choosing ∆z = 10 mm is a
good compromise as it is shown in [151].

Other approach for evaluation of database signals is to use cost functions (3.48) calcu-
lated for all signals stored in the structure C instead of CC coefficients directly. In this
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case, calculation of cost functions is not so time consuming as in the previous methods
because the signals already stored in the database are used and accordingly, there is no
need to use FEM for their estimation. Using evaluated cost function values,the vector
C is searched for the minimum of the cost function. The found minimum determines
the dominant mode in the oscillating interface.

Tables 3.17 and 3.18 show dominant mode identifications results obtained by the
cross-correlation approach using cost functions validation. Noisy test signals (noise
level 10%) for appropriate modes were simulated assuming that the amplitude of oscil-
lating interface is equal to A0 = 7 mm. Azimuthal positions of the sensor ring are set to
α = 0◦ (Table 3.17) and to α = 20◦ (Table 3.18). It can be observed that for all cases the

Table 3.17: CC dominant mode identifications - Noise = 10%

RMode IMode A[mm] δA[%] r CF[%] CPU[s]

11 11 7.04 0.56 0.998135 4.87 3.7

12 12 7.00 0.00 0.998192 5.09 5.0

13 13 7.19 2.71 0.997657 4.99 4.9

21 21 7.12 1.68 0.998793 3.60 4.7

22 22 8.00 14.29 0.996398 5.15 4.7

23 23 8.00 14.29 0.917502 11.72 4.7

31 31 6.90 -1.37 0.998229 2.61 3.9

32 32 7.21 2.96 0.980606 4.00 3.8

33 33 7.33 4.70 0.677485 7.07 3.9

Table 3.18: CC identifications - unknown azimuthal ring position - Noise = 10%

RMode IMode A[mm] δA[%] α[◦] r CF[%] CPU[s]

11 11 7.03 0.39 20.0 0.998196 4.48 3.7

12 12 7.00 0.00 20.0 0.998108 5.45 4.5

13 13 7.25 3.55 20.0 0.997227 6.41 4.4

21 21 7.02 0.25 20.0 0.998939 3.63 3.9

22 22 7.57 8.11 20.0 0.997921 4.58 3.9

23 23 7.61 8.72 18.0 0.979056 8.53 3.9

31 31 6.95 -0.73 20.0 0.997758 4.22 3.9

32 32 7.88 12.62 20.0 0.987221 3.42 3.8

33 33 7.48 6.80 -39.0 0.664594 10.45 3.9
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dominant mode is correctly identified (RMode = IMode). Amplitudes of modes lower
than mode η22 are found with the relative error δA less than 4%. Errors for amplitudes
of other modes (≥ η22) are higher but less than 15%. The amplitudes of all modes, with
the exception of the mode η13, are overestimated.

CC coefficients for all but one identified interfaces are high (r > 0.98). Only for the
interface described by the mode η33, the CC coefficient is relatively small and equal to
about 0.7.

Identification of unknown azimuthal sensor ring positions is mostly correct, except
the mode η33. Calculated values of the cost function fluctuate around 5%, excluding
the modes η23 and η33, for whom they are about 50% higher. A similar trend can be
observed in the case of methods already presented, see Table 3.8 for SGA and Table 3.13

for MDS.
Average time to identify the dominant mode using CC approach with cost function

validation is 4.0s, which is the best time of all the previously presented methods. This
leads to the conclusion that although the CC require pre-build database (relatively
time-consuming), in the identification phase, this method is a competitive alternative
to MDS-AS.

3.4. summary

In this chapter, the problem of the interface identification between two stationary os-
cillating immiscible conducting fluids placed in a cylindrical cell and supplied with
direct current has been presented. A simplified model of the interface based on eigen
η-modes concept has been introduced. Magnetic field around the cylindrical cell with
fluids has been calculated using the Biot-Savart law and approximate analytical method
for a determination of current density distribution flowing in the cell. The found an-
alytical description of current density in the cell has been verified with FEM using
commercial and self-developed software (COMSOL®, TFEM3D). TFEM3D has been
specially optimized to solve the problem fast and reliable. It includes a fast FEM mesh
generator as well as some iterative solvers from SLATEC library.

Based on the magnetic field tomography concept the inverse problem of the inter-
face reconstruction has been formulated. The inverse problem presented here has been
restricted to the interface dominant mode identification only. It can be treated as a first
stage for the full interface reconstruction. Magnetic signal profiles used in the identifica-
tion process have been presented and limits of the implemented measurement system
have been discussed. Three methods for the interface dominant mode identification
have been introduced. The first method applies a simple genetic algorithm (SGA). The
second one uses a modified direct search approach (MDS) and MDS associated with
amplitude spectra analysis (MDS-AS). The third one employs the cross-correlation co-
efficient and the cost function validation together with solutions located in the pre-
build database (CC). All three methods have been described in details and tested on
simulated noisy data. Intentionally, the validation of the methods with measurement
data is not presented here because its correct presentation demands also description
of methods which are not strictly connected with field computation, e.g., signal data
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processing, analysis of measurement system, etc. But this is out of scope of this mono-
graph. In fact, the validation has been performed resulting in the positive evaluation
of the proposed methods.

There are a number of publications written by a group with whom the author
worked associated with the content of this chapter which can be considered as its
supplement. The list (except publications already cited) sorted by date of publication
is as follows: [19] forward simulations (FEM), [155] interface reconstruction (GA), [77]
interface reconstruction (GA, FEM), [21] MFT - test experimental setup, rotating cylin-
der, electrolyte - metal interface, [80] rectangular aluminum cell, stability analysis, [91]
measurements, test rotating distorted electrolyte - metal interface, [20] interface iden-
tification, improved GA, dominant mode, [158] interface reconstruction, modified GA,
[149] experimental setup, feed electrode shape influence, [150] experimental setup,
feed-wire problem, [89] experiment, reconstruction, mode η11, [65] aluminum reduc-
tion cell, magnetic field profile, [78] evolution strategy, realistic post-processing, [115]
MFT - experiment, mode η11, [79] regularization technique, experimental data , [90]
MFT - experiment, [152] MFT - system calibration, simulations, validation with experi-
ment.



4
S E M I - A N A LY T I C A L M E T H O D S I N L O R E N T Z F O R C E E D D Y
C U R R E N T T E S T I N G

4.1. introduction

Lorentz force eddy current testing (LET) is a nondestructive technique which can be
applied to systems where the source of magnetic field (e.g. permanent magnet) and
the investigated conducting object are in relative movement. In such systems, due to
induced eddy currents, a braking force (Lorentz force) acting on a conducting object
appears. In LET, instead of measuring directly this force, the force having the same
magnitude but opposite direction exerted on a permanent magnet is measured. LET
can be applied to e.g. contactless velocity measurements in metallurgy [123], deter-
mination of conductivity [127], and detection/reconstruction of defects in conducting
materials [105]. Numerical simulations of LET (forward and inverse) require precise
calculations of forces existing in the LET system. In this chapter, some analytical and
semi-analytical techniques applied to LET simulations are presented in details.

4.1.1. moving coordinate systems - transformations

The principal postulates of special relativity are as follows [63]:

• postulate of relativity, the laws of physics are the same in all inertial systems,

• postulate of a universal light speed, the same speed of light is measured in all inertial
systems.

Two inertial systems are considered, namely, stationary system O (reference frame)
with coordinates (x, y, z, t) and the moving system O′ (moving frame) with coordinates
(x′, y′, z′, t′). The system O′ moves with a constant velocity v relatively to O (Fig. 4.1).

101
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O x

y

z

O´ x´

y´

z´

vt

r
r´

Fig. 4.1: The relative motion of two inertial systems

According to the first postulate, for problems when the displacement current (∂D/∂t =
0) can be omitted, quasi-static magnetic Maxwell’s equations take in both systems the
following forms:

Reference frame O Moving frame O′

∇×H = J ∇′ ×H′ = J′

∇ · B = 0 ∇′ · B′ = 0

∇ · J = 0 ∇′ · J′ = 0

∇× E = −∂B
∂t

∇′ × E′ = −∂B′

∂t′

B = µ0(H + M) B′ = µ0(H′ + M′) (4.1)

where

∇ =
∂

∂x
1x +

∂

∂y
1y +

∂

∂z
1z, ∇′ = ∂

∂x′
1x′ +

∂

∂y′
1y′ +

∂

∂z′
1z′

From the second postulate, the Lorentz transformation of time and space coordinates
is obtained as:

t′ = γ
(

t− v · r
c

)
(4.2)

r′ = γ(r− vt) (4.3)

where

γ =
1√

1 + β2
, β =

v
c

(4.4)

and c is the speed of light in a vacuum. Taking into account v� c, (4.4) can be written
as

β ' 0, γ ' 1 (4.5)
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and, in consequence, the Lorentz transformation reduces to the Galilean transforma-
tion:

t′ = t (4.6)

r′ = r− vt (4.7)

It is necessary to find transformations between both inertial systems for the field
equations (4.1) corresponding to the Galilean transformation (4.6) - (4.7) [135], [69],
[42]. Considering the scalar function f ′(x′, y′, z′, t′) defined in the system O′, spatial
partial derivatives can be calculated as follows:

∂ f ′

∂x
=

∂ f ′

∂x′
∂x′

∂x
=

∂ f ′

∂x′
(4.8)

Using (4.8), the following relation between nabla operators is received:

∇′ f ′ = ∇ f ′ (4.9)

The time derivative of f ′ is calculated using a chain rule as:

∂ f ′

∂t
=

∂ f ′

∂t′
∂t′

∂t
− ∂ f ′

∂x′
∂x′

∂t
− ∂ f ′

∂y′
∂y′

∂t
− ∂ f ′

∂z′
∂z′

∂t
=

=
∂ f ′

∂t′
− vx

∂ f ′

∂x′
− vy

∂ f ′

∂y′
− vz

∂ f ′

∂z′
=

=
∂ f ′

∂t′
− (v · ∇′) f ′ (4.10)

Applying (4.9), (4.10) can written as

∂ f ′

∂t
=

∂ f ′

∂t′
+ (v · ∇) f ′ (4.11)

For vector functions, similar expressions can be derived. Let F(x′, y′, z′, t′) be a vector
function in the O′ system. It is easy to show that

∇′ · F′ = ∇ · F′ (4.12)

and

∇′ × F′ = ∇× F′ (4.13)

For the time derivative, the following relation is valid:

∂F′

∂t
=

∂F′

∂t′
+ (v · ∇)F′ (4.14)

Using (4.12), (4.13), and the vector identity:

∇× (A× B) = (B · ∇)A− (A · ∇)B + A(∇ · B)− B(∇ ·A) (4.15)
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The equation (4.14) can be rewritten as

∂F′

∂t
=

∂F′

∂t′
+ v(∇ · F′)−∇× (v× F′) (4.16)

Finally, introducing (4.12), (4.13), and (4.15) into (4.1) for the moving frame O′, the
following set of equations is received:

∇×H′ = J′,

∇ · B′ = 0,

∇ · J′ = 0,

∇× (E′ − v× B′) = −∂B′

∂t
(4.17)

Comparing (4.1) with (4.17), the following field transformations can be found:

H′ = H,

B′ = B,

E′ = E + v× B,

J′ = J (4.18)

The transformation for the magnetization density vector takes the form:

M′ = M (4.19)

The Ohm law has to be written as

J = σ(E + v× B) (4.20)

It can be concluded that this law applies to any frame of reference that moves across
magnetic flux lines (or in which the body carrying the current J moves with respect to
the magnetic field source) [69].

4.2. 2d lorentz eddy current testing models

4.2.1. problem description

A long permanent magnet (PM) of a rectangular cross-section (w× h× l) is located at
the lift-off distance h0 above a conducting plate (L×D× l) of electrical conductivity σ0
moving with a constant velocity v0 along x-axis v = v01x (Fig. 4.2).

The PM is magnetized along 0Y-axis with magnetization vector M = M1y. In the
plate, an artificial, ideal (σd = 0) defect cx × cy × l is drilled at the depth d. The center
of the defect is located at x0 = [x0, y0]

T = [xn,−d− cy/2]T .
In LET measurement systems, the force exerted on PM FPM caused by relative mo-

tion of the PM and the conducting object is measured directly. However, in simulations,
this force is calculated indirectly using the 3rd Newton’s axiom which says that the
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Fig. 4.2: The permanent magnet above the moving conducting plate with a defect

force exerted on the PM has the same magnitude as the Lorentz force acting on the
conductor FLF but the opposite direction (FPM = −FLF). The reason for this is the
greater accuracy of the method of Lorentz force calculation than methods which can
be applied for direct estimation of the force exerted on the PM, i.e., methods based on
Maxwell’s tensor or the virtual work principle. In 2D LET systems where l � L, D, the
force exerted on PM has only two components FPM = [Fx, Fy]T .

The force exerted on PM can be described in two equivalent coordinate systems (CS):
(1) CS fixed to the PM, in which the conducting object (CO) is moving, and (2) CS fixed
to the CO where the PM is moving (Fig. 4.3).
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Fig. 4.3: The relative movement - forces exerted on the permanent magnet
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In both CS, the component Fy exerted on the PM is always positive, regardless of
the direction of the velocity vector and it is called the lift force (FL). The sign of the Fx
component depends on the direction of the velocity vector as well as on the used CS.
In the CS fixed to the PM, the sign of Fx component follows the direction of the vector
v and, in this case, Fx is called the drag force (FD). In the CS fixed to the CO, the sign of
Fx component is opposite to the direction of the vector v and the component is called
the brake force (FB).

Figure 4.4 shows typical distributions of force components exerted on the PM located
above a moving aluminum block with a defect (see Fig. 4.2).

Fy (ANA)

Fx (ANA)

DEF= 12× 2× 2 mm, PM(D): R = 2.5 mm, h0 = 11 mm
v0 = 1 cm/s, σ0 = 30.61 MS/m

F
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N
/m

]
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Fig. 4.4: Sample profiles of force components exerted on the permanent magnet hung at a lift-
off distance h0 above the moving aluminum block L × D = 250 mm× 50 mm with cx × cy =
12 mm× 2 mm defect located at a depth d = 2 mm (v = v01x)

4.2.2. lorentz forces in 2d let system

To calculate forces exerted on the PM above the moving conducting object with de-
fect analytically, some simplifications must be introduced. First, it is assumed that the
magnetic field produced by the PM is not affected by induced eddy currents in the
conducting object, i.e., so-called weak reaction approach (WRA)[138, 142] can be ap-
plied. A necessary condition for the applicability of the WRA can be formulated as
Rm = v0µσ0a � 1, where Rm is the magnetic Reynolds number, a is the length pa-
rameter (specific for the analyzed problem), and v0, σ0, µ are the velocity, the electrical
conductivity, and the magnetic permeability of the conducting object, respectively. The
use of WRA allows to calculate the induced eddy currents J in a conducting object
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directly by Ohm’s law (4.20) for moving conductors. For 2D problems, the equation
(4.20) is reduced to

J = σ0(E + v× B) = σ0(−∇φ + v× B) = σ0v× B = σ0v0By1z (4.21)

because of ∇φ = 0. B denotes the magnetic flux density produced by the PM and σ0,
v0 are the electrical conductivity and the velocity of the conducting object, respectively.

The force exerted on the 2D PM above the moving conductor can be calculated using
the following formula of the Lorentz force acting on the conductor:

FPM = −FLF = −l
∫

S0

J× BdS =

= lσ0v0

[(∫
S0

B2
ydS
)

1x −
(∫

S0

BxBydS
)

1y

]
(4.22)

where J denotes eddy currents density, B describes the magnetic flux density produced
by the PM, S0 = L× D is the cross-section area of the conductor, and l is the length
of the system in the z-direction. It should be noted that directions of force components
are independent from the direction of the magnetization vector M. They depend only
on the direction of the velocity vector. Due to anti-symmetry of Bx, the second integral
in (4.22) disappears for L� D and the conductor without defects, i.e., the lift force FL
calculated by the WRA always equals 0 if the PM is far away from the front/back walls
of the conductor.

Let F(n)
0 and F(n) denote profiles of forces exerted on the PM found for the conductor

moving between x1 and x2 with velocity v = v01x for the defect-free system and the
system with a defect, respectively. The index n corresponds to the actual position of the
conductor center xn ∈< x1, x2 >. The vector difference ∆F(n) = F(n) − F(n)

0 describes
the influence of the defect on Lorentz force component profiles and is called the defect
response signal (DRS). In 2D LET problems eddy currents induced in the conductor
have only y-component (4.21). For a conductor with an ideal defect (σd = 0) and the
center located at xn, induced eddy currents J(n) can be described by the superposition
J(n) = J(n)0 + j(n)D , where J(n)0 denotes eddy currents induced in the conductor without

defect located at the same position xn and j(n)D are eddy currents in the region covering

the defect equal j(n)D = −J(n)0

∣∣∣∣S(n)
D

. Using above and (4.22), the DRS can be calculated as

∆F(n) = F(n) − F(n)
0 = −l

∫
S(n)

D

j(n)D × B(n)dS = l
∫

S(n)
D

J(n)0 × B(n)dS =

= lσ0v0

{[
−
∫

S(n)
D

B(n)
y B(n)

y dS
]

1x +

[∫
S(n)

D

B(n)
x B(n)

y dS
]

1y

}
(4.23)

2D DRS calculations with WRA can be directly applied to conductors with more ideal
defects because induced eddy currents in the plate flow only in the y-direction and
currents in regions covering defects do not affect each other. The resultant DRS for
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conductors containing more ideal defects is a simple superposition of single defect
signals:

∆F(n) =
K

∑
k=1

∆F(n)
k = l

K

∑
k=1

∫
S(n)

Dk

J(n)0 × B(n)dS (4.24)

where K is the number of defects and S(n)
Dk

denotes the region covering the kth defect
in the conductor with center located at xn. The profile of the absolute force exerted on
the PM above the moving conductor with K ideal defects calculated with the help of
the WRA is given by

F(n) = F(n)
0 +

K

∑
k=1

∆F(n)
k =

= −l
∫

S(n)
0

J(n)0 × B(n)dS + l
K

∑
k=1

∫
S(n)

Dk

J(n)0 × B(n)dS (4.25)

In next sections, it will be shown how to calculate (4.23) - (4.25) using simple 2D
models of the PM.

4.2.3. dipolar model of 2d permanent magnet

As the simplest model of a long PM of a rectangular cross-section w× h magnetized
with the magnetization M = M1y, an equivalent 2D magnetic line dipole (l-dipole)
of the moment ml = ml1y = Mwh1y located at the center of gravity of the magnet is
considered. The physical interpretation of the l-dipole is shown in Fig. 4.5. The l-dipole
can be understood as two infinitely thin line currents flowing in opposite z-directions
located at a distance d from each other. The formula for the magnetic field produced

M

Permanent
magnet

Equivalent
2D model

2D magne�c
-dipolel

x

y

I -I

d

x

y

ml=I1 ´z d=

    =Mwh1y

d

w

h

Fig. 4.5: Rectangular permanent magnet and the equivalent 2D magnetic line dipole (l-dipole)

by the l-dipole is easy to derive. The magnetic field produced by an infinitely thin line
with current (Fig. 4.6a) can be described in the cylindrical coordinate system as

B = −I
µ0

2πr
1φ, A = I

µ0

2π
ln r1z (4.26)
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Fig. 4.6: Configurations of line currents used to determine the magnetic flux density of l-dipole

where A is the magnetic vector potential (B = ∇×A). The magnetic vector potential
A of two infinitely thin lines conducting opposite currents (Fig. 4.6b) is calculated as:

A = I
µ0

2π
ln

r1

r2
1z (4.27)

where

r1 = r

√
1− d

r
cos φ +

(
d
2r

)2
, r2 = r

√
1 +

d
r

cos φ +

(
d
2r

)2

For a magnetic l-dipole d� r and the following expressions can substitute r1 and r2:

r1
∼= r

√
1− d

r
cos φ, r2 ∼= r

√
1 +

d
r

cos φ

Equation (4.27) takes the form:

A = I
µ0

4π
ln

1− d
r cos φ

1 + d
r cos φ

1z (4.28)

Using the Taylor expansion

ln
1 + x
1− x

= 2
(

x +
x3

3
+ . . . +

x2i+1

2i + 1
+ . . .

)
, |x| < 1 (4.29)

equation (4.28) is simplified to

A = − µ0

2π
Id

cos φ

r
1z (4.30)

Finally, the magnetic flux density produced by 2D magnetic l-dipole of moment ml =
ml1y = I1z × d shown in Fig. 4.7 is described in the cylindrical coordinate system as:

B = ∇×A =
µ0

2πr2 ml
(
sin φ1r − cos φ1φ

)
, ml = Id (4.31)
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Fig. 4.7: 2D magnetic line dipole (l-dipole)

The following vector identity

ml = (ml · 1r)1r + (ml · 1φ)1φ = ml sin φ1r + ml cos φ1φ

allows to rewrite (4.31) as

B =
µ0

2πr2

(
2

ml · r
r2 r−ml

)
(4.32)

regardless of the choice of the coordinate system.
The magnetic flux density B(n) at any point r = [x, y]T produced by 2D magnetic

l-dipole ml = ml1y located at rn = [xn, yn]T is given by

B(n) = ml
µ0

2π

2(x− xn)(y− yn)

[(x− xn)2 + (y− yn)2]
2 1x+

+ ml
µ0

2π

(y− yn)2 − (x− xn)2

[(x− xn)2 + (y− yn)2]
2 1y = B(n)

x 1x + B(n)
y 1y (4.33)

The DRS ∆F(n) of a single defect in a conducting plate moving along the x-axis
below the magnetic l-dipole can be calculated using (4.23). In this case the defect is
moving together with the plate from x1 to x2 (Fig. 4.2). In order to simplify the DRS
calculations, the CS fixed to the conductor was chosen (Fig. 4.8) in which the position
of the defect stays unchanged and the PM is moving from x2 to x1.

Having (4.33) in (4.23), the DRS takes the following form:

∆F(n) = lσ0v0

(
ml

µ0

2π

)2
{
−
∫

SD

[
(y− yn)2 − (x− xn)2]2
[(x− xn)2 + (y− yn)2]

4 dxdy1x+

+ 2
∫

SD

(x− xn)(y− yn)
(y− yn)2 − (x− xn)2

[(x− xn)2 + (y− yn)2]
4 dxdy1y

}
(4.34)
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Fig. 4.8: General setup of the LET system used to calculate defect response signals

Indefinite integral terms in (4.34) can be calculated analytically and expressed by the
following functions:

fx(x, y, xn, yn) =
(x− xn)(y− yn)

6 [(x− xn)2 + (y− yn)2]
2 +

1
8(x− xn)(y− yn)

+

+
1

8(x− xn)2 arctan
(

y− yn

x− xn

)
+

+
1

8(y− yn)2 arctan
(

x− xn

y− yn

)
(4.35)

fy(x, y, xn, yn) =
1

12
(y− yn)2 − (x− xn)2

[(x− xn)2 + (y− yn)2]
2 (4.36)

Using (4.35) - (4.36), the analytical forms of DRS components for the rectangular defect
{Sd : cx × cy} located at the depth d can easily be written as:

∆F(n)
x = lσ0v0

(
ml

µ0

2π

)2
×

×
[

fx

( cx

2
,−d, xn, yn

)
− fx

( cx

2
,−d− cy, xn, yn

)
−

− fx

(
− cx

2
,−d, xn, yn

)
+ fx

(
− cx

2
,−d− cy, xn, yn

)]
(4.37)

∆F(n)
y = lσ0v0

(
ml

µ0

2π

)2
×

×
[

fy

( cx

2
,−d, xn, yn

)
− fy

( cx

2
,−d− cy, xn, yn

)
−

− fy

(
− cx

2
,−d, xn, yn

)
+ fy

(
− cx

2
,−d− cy, xn, yn

)]
(4.38)
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If the plate does not contain any defects and L � |yn + D| then, according to (4.25)
and (4.37) - (4.38), Lorentz force exerted on the l-dipole located at yn above the moving
plate calculated by means of the WRA is equal to:

Fx0 = lσ0v0

(
ml

µ0

2π

)2 π

8

[
1
y2

n
− 1

(yn + D)2

]
(4.39)

Fy0 = 0 (4.40)

The verification of the introduced approach of DRS calculations is performed by com-
paring them with results received from the finite element method (FEM) applied to the
same models. FEM models and possible solution techniques were already described in
details elsewhere, e.g. [154],[138].

Figure 4.9 shows the first test model consisting of an infinitely long cylindrical PM
moving with a constant velocity above a conducting plate. It is easy to show that

cxs0

s  = 0d
cy
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d
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-dipolel

Permanent
magnet (CYL)

D
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v=-v 10 x
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y
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R

h0

Conduc�ve
plate

Defect

Fig. 4.9: Infinitely long, cylindrical permanent magnet of radius R, uniformly magnetized with
the magnetization vector M = M1y, moving with the constant velocity v = −v01x above a
conducting plate with a rectangular defect

the magnetic flux density for r > R produced by a uniformly, diametral magnetized
infinitely long cylindrical PM of radius R is equal to the magnetic field (4.32) produced
by the equivalent l-dipole of magnetic moment ml = πR2M localized at the center of
the PM.

Figure 4.10 shows sample results of DRS calculations using dipolar model for the
following LET configuration: (1) the PM: R = 2.5 mm, M = Br/µ0 = 1.17 T/µ0,
h0 = 11 mm moving with the velocity v0 = 1 cm/s, (2) the conducting plate: L× D =
250 mm× 50 mm, electrical conductivity σ0 = 30.61 MS/m, (3) the rectangular defect:
cx × cy = 12 mm× 2 mm located at the depth d = 2 mm. To validate the quality of
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Fig. 4.10: Cylindrical permanent magnet - comparison of the equivalent dipolar model with the
reference FEM solution

dipolar models quantitatively, a normalized root mean square error (NRMSE) and a
normalized maximum difference error (NMDE) are used. The errors are defined as:

NRMSE =
√

ε2
x + ε2

y, NMDE =
√

ζ2
x + ζ2

y (4.41)

where

εc =

√
1
N

N
∑

n=1

[
S(n)

c,DIP − S(n)
c,FEM

]2

max
n=1...N

[
S(n)

c,FEM

]
− min

n=1...N

[
S(n)

c,FEM

]100% (4.42)

ζc =
Smax

c

max
n=1...N

[
S(n)

c,FEM

]
− min

n=1...N

[
S(n)

c,FEM

]100% (4.43)

Smax
c = max

n=1...N

∣∣∣S(n)
c,DIP − S(n)

c,FEM

∣∣∣ (4.44)

while index c ∈ {x, y}, N is a number of test points in the force/DRS profile S, and the
subscript FEM denotes a reference solution calculated by FEM. Performed simulations
show an excellent agreement between results received with help of the dipolar model
and the FEM model. NRMS errors are less than 1% and 0.25% for Lorentz force and
DRS profiles, respectively. It can be observed that the NRMSE for y-components is
twice greater than errors for x-components.

The second test model is shown in Fig. 4.8. The equivalent l-dipole is located at
the center of the rectangular PM moving above a conducting plate. The following
LET configuration was used in test simulations: (1) the PM: w× h = 15 mm× 25 mm,
M = Br/µ0 = 1.17 T/µ0, h0 = 1 mm, v0 = 1 cm/s, (2) the conducting plate: L× D =
250 mm× 50 mm, electrical conductivity σ0 = 30.61 MS/m, (3) the rectangular defect:
cx × cy = 12 mm× 2 mm located at the depth d = 2 mm.
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Results of simulations are presented in Fig. 4.11. In contrast to the first test, the
use of simple, central equivalent l-dipole results in computation errors which are not
acceptable, i.e., over 21% and 15% for Lorentz force and DRS, respectively.
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Fig. 4.11: Rectangular permanent magnet - Lorentz force and DRS profiles received from the
central equivalent dipole model together with the reference FEM solution

The errors can be reduced if instead of the central l-dipole the α-model shown in
Fig. 4.12 is used.

M
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a-modelCentral -dipole l
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ah

y ym = Mwh1l y 

ml
ml

w

h

Fig. 4.12: Rectangular permanent magnet - equivalent l-dipole models

In the α-model, y-position of the equivalent l-dipole depends on the parameter α.
The optimal value of the parameter α ∈< 0, 1 > can be easy found by a minimiza-
tion procedure where the NRMSE of Lorentz force profiles received from the α-model
comparing to the FEM model is minimized. The profiles used in the minimization pro-
cedure are calculated for the plate without any defects which means that the found
value of α is not the best one for the plate with defects but ensures that the α-model
gives better results than the central l-dipole model.

Figure 4.13 presents profiles for α = 0.433. The corresponding NRMSE is equal to
1.26% and 2.39% for Lorentz force and DRS profiles, respectively.

In the current section, the simplest 2D model of a rectangular, infinitely long PM is
presented, i.e., the l-dipole model. The use of a single l-dipole model together with
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Fig. 4.13: Rectangular permanent magnet - Lorentz force and DRS profiles calculated using the
α-MD model

the WRA in modeling LET system enables to find analytical formulas for Lorentz force
profiles exerted on the PM above moving plate of finite width and depth with/ without
defects (4.37) - (4.38). It was also shown that the use of α-model instead of the central
l-dipole can significantly improve the accuracy of Lorentz force as well as the DRS
calculations. In the next section, it will be shown how to calculate Lorentz force and
DRS using exact magnetic field formulas for a rectangular PM.

4.2.4. 2d rectangular permanent magnet - exact field formulas

Let the infinitely long, rectangular PM (w× h) be magnetized with a constant magneti-
zation density M = M1y. In this case, the magnetic field produced by the rectangular
PM can be calculated using an equivalent 2D current sheet model shown in Fig. 4.14.
The surface sheet current densities JS can be found from the cross product of M and
the normal unit vector n emerging from the side bounds of the PM.
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Fig. 4.14: Rectangular permanent magnet - the equivalent current sheet model
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The magnetic flux density B = [Bx, By]T at any point P outside the PM is calculated
by a superposition of B1 and B2, the magnetic flux densities of the left and the right
current bound layers as:

B = B1 + B2 =
µ0M
2π

 h/2∫
−h/2

1z × r1

r2
1

dy′ −
h/2∫
−h/2

1z × r2

r2
2

dy′′

 (4.45)

where

r1 =

√(
x +

w
2

)2
+ (y− y′)2, r2 =

√(
x− w

2

)2
+ (y− y′′)2

The integrals in (4.45) can be calculated analytically and expressed using elementary
functions as:

Bx(x, y) =
µ0M
4π
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[
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2 )
2 + (y− h

2 )
2
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2 )
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2
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2 )
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2
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2 )
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2

]
(4.46)

By(x, y) =
µ0M
2π

[
arctan
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)
+
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(
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2
x− w

2

)]
(4.47)

In order to calculate DRS and Lorentz forces using the WRA, (4.46) - (4.47) were
substituted into (4.23) - (4.25). Unfortunately, in this case, it was not possible to find
appropriate analytical formulas as for the dipolar model. To overcome this problem,
a concept of voxels grid is introduced (voxel = volume x element). It is assumed that
any conducting region may be replaced by a uniform grid of conducting volumetric
elements (voxels) ∆V0 = l∆S = l∆x∆y of conductivity σ0 (l is the length of the system
in the z-direction, and ∆x, ∆y are the grid density in x- and y-direction, respectively).
In each voxel flow induced eddy currents of current density J0. If the surface ∆S of
voxels is sufficiently small, continuous distribution of eddy currents induced in the
ith voxel by the moving PM located at rn can be approximated by a constant current
density vector J(i,n)0 calculated at ri, the center of the voxel. Taking above into account
and using setup shown in Fig. 4.15, ∆F(n) given by (4.23) can be rewritten as:

∆F(n) = l
∫

Sd

J0 × BdS ' l∆S1

N1

∑
i=1

J(i,n)0 × B(i,n) = ∆F̃(n) (4.48)

and

∆F̃(n) = l∆S1σ0v0

N1

∑
i=1

[
−B(i,n)

y B(i,n)
y 1x + B(i,n)

x B(i,n)
y 1y

]
(4.49)



4.2. 2d lorentz eddy current testing models 117

Permanent
magnet

Defect ( s  =�s  ! )d 0

y

x

v=-v 10 x
x´

y´

Voxel grid ( DS =�Dx Dy �)0 0 0

rn

rir´

Equivalent 2D current 
sheet model

h0

cx

d

cy

Grid of measurement points: 

        {x }Î<x ,x >n 1 2
h

w

x1 xn x2

M

JS

JS

Fig. 4.15: LET system setup for DRS calculations - 2D current sheet model of the rectangular PM
and the grid of voxels concept for a defect modeling

where N1 is the total number of voxels in Sd region, B(i,n)
x = Bx(xi− xn, yi− yn), B(i,n)

y =
By(xi − xn, yi − yn), yn = h0 + h/2, and Bx(x, y), By(x, y) are defined by (4.46) and
(4.47), respectively. Similarly, the Lorentz force F̃(n) exerted on the rectangular PM
moving above the conducting plate (L× D) with K ideal defects can be calculated as:

F̃(n) =l∆S0σ0v0

N0

∑
i=1

[
B(i,n)

y B(i,n)
y 1x − B(i,n)

x B(i,n)
y 1y

]
+

+ lσ0v0

K

∑
k=1

∆Sk

Nk

∑
j=1

[
−B(j,n)

y B(j,n)
y 1x + B(j,n)

x B(j,n)
y 1y

]
(4.50)

where (N0, ∆S0) and (Nk, ∆Sk) are total voxel numbers and voxel grid densities of the
plate and defects voxel models, respectively.

Figure 4.16 shows results of sample simulations performed for the following LET
configuration: (1) PM: w× h = 15 mm× 25 mm, M = Br/µ0 = 1.17 T/µ0, h0 = 1 mm,
(2) conducting plate: L × D = 250 mm× 50 mm, σ0 = 30.61 MS/m, v0 = 1 cm/s, (3)
rectangular defect: cx × cy = 12 mm× 2 mm, d = 2 mm, and voxel grid densities ∆S0 =
∆S1 = ∆x× ∆y = 1 mm× 1 mm. The results of simulations are in excellent accordance
with the results obtained by the reference FEM, i.e., the NRMSE given by (4.41) is equal
to 0.65% and 0.16% for the Lorentz force and the DRS profiles, respectively.
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Fig. 4.16: Rectangular PM - Lorentz force and DRS profiles calculated with exact magnetic field
formulas for voxel grid density ∆x× ∆y = 1 mm× 1 mm

4.2.5. résumé

In Section 4.2., two analytical approaches of Lorentz force calculations in 2D LET sys-
tems are described. In both approaches, the weak reaction formulation of the LET
problem is applied, i.e., the corresponding magnetic Reynolds number is much less
than 1. Both approaches are based on the principle of superposition to calculate the
defect response signals. In the first approach, the PM is replaced by a single equivalent
magnetic l-dipole located inside the PM. This enables to find analytical formulas of
DRSs for one or more rectangular defects as well as the global Lorentz force profile
exerted on the PM above the moving plate. The position of the l-dipole can be found
using procedure which minimizes the NRMSE between the Lorentz force profile calcu-
lated from the α-model and the reference solution. In the second approach, the exact
analytical formulas describing the magnetic field generated by a rectangular PM are
used. In this case, it was not possible to find analytical expressions for DRS. Therefore,
a semi-analytical approach based on regular grids of voxels replacing the conductor as
well as defects is introduced. Sample profiles of DRS and Lorentz forces calculated by
both methods together with reference solutions obtained by FEM are also shown.

4.3. modeling of 3d permanent magnets

4.3.1. introduction

An approximation of an arbitrary permanent magnet with one magnetic dipole pro-
vides sufficient solution for the magnetic field only at large distances [106]. Analytical
description of the PM magnetic field is of great interest, but possibilities to derive
an analytic solution and its integral are restricted and becomes a challenge for mag-
nets of complex shapes. To overcome above limitations, it is introduced the magnetic
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dipoles model (MDM) of a 3D permanent magnet in which the PM is substituted by
an assembly of magnetic dipoles. The MDM allows to model PM of arbitrary shape by
appropriate placing of magnetic dipoles in the PM volume. Optimal positions of mag-
netic dipoles can be found with help of the optimization procedure which minimizes
the error between the magnetic field obtained from the MDM and the reference solu-
tion. An accuracy of MD models depends on a number of magnetic dipoles applied in
the model. Further, an influence of the number of magnetic dipoles on the MDM accu-
racy is investigated. For simple shapes of 3D permanent magnets (e.g. cube, cylinder,
cylinder rings, cylinder segments), it is possible to find analytical formulas describ-
ing the magnetic field produced by them [7, 27, 33, 41, 43, 44, 54, 112, 113, 117, 128].
Analytical formulas provide accurate modeling of the magnetic field at any point in
space and can serve as reference solutions necessary for evaluation of the optimal MD
models. The charge model enables to find an analytic solution of the magnetic field
at each point outside rectangular PM in a form of elementary functions [2, 137]. For
a cylindrical PM, the surface current model is applied [33, 44]. In the surface current
model an axially magnetized with constant magnetization cylindrical PM is replaced
by an equivalent surface current flowing in azimuthal direction on the lateral cylinder
surface. In this case, the magnetic flux density outside the PM can be described with
help of the generalized complete elliptic integrals [33].

4.3.2. magnetic dipoles models (mdm)

The idea of the magnetic dipoles model (MDM) consists in replacing the modeled PM
by a regular grid of volumetric elements of identical volume (voxels). Shape of voxels
depends on the PM shape, e.g. for a rectangular PM, voxels are small cuboids whereas
for a cylindrical PM central voxels are small cylinders and the others are hollow cylin-
der sectors. It is assumed that only one magnetic dipole can be inserted into the voxel.
Because all voxels have the same volume, magnetic moments of inserted magnetic
dipoles are the same and equal m = MV0/ND, where M is the PM magnetization
vector, V0 is the volume of PM, and ND denotes the number of magnetic dipoles used
in the MDM. Positions of magnetic dipoles in voxels can be defined arbitrary, e.g. by
using the center of gravity (COG) of the voxel. However, in the presented approach,
the positions are determined with help of an optimization procedure which minimizes
an error between the magnetic flux density obtained using MDM and the reference
solution. The reference solution can be calculated analytically for simple PM shapes
like cuboids, cylinders, or numerically for complicated forms of the PM.

4.3.3. α-mdm of rectangular permanent magnet

The permanent magnet in the form of rectangular cuboid with the base edge length
a, the height h is located at the point r0 = [x0, y0, z0]

T corresponding to the COG of
the PM base wall (Fig. 4.17). Edges of the PM are parallel to the axes of the global
Cartesian coordinate system. The PM is magnetized along z-axis, where M = M1z
denotes a magnetization vector. According to the idea of MDM, the rectangular PM
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Fig. 4.17: Magnetic dipoles model α-MDM of a rectangular permanent magnet

is composed of a set of ND = N2
a Nh voxels, where Na is a number of voxels along

base edges and Nh is a number of voxels along height edges. Volume of each voxel is
equal to VM = ∆a2∆h = (a/Na)2(h/Nh) = V0/ND, where V0 = a2h denotes volume
of the PM and ND is the total number of magnetic dipoles in α-MDM. The moment
of one magnetic dipole is given by m = m1z = MVM. The magnetic flux density
B = [Bx, By, Bz]T at any point r = [x, y, z]T outside the PM can be calculated as a
superposition of magnetic flux densities of all dipoles in the α-MDM:

B(x, y, z) =
ND

∑
m=1

bm(x, y, z) (4.51)

where bm(x, y, z) is the magnetic flux density of the mth magnetic dipole located at
rm = [xm, ym, zm]T described by the formula

bm = VM
µ0

4π

[
3

M · (r− rm)

|r− rm|5
(r− rm)−

M
|r− rm|3

]
(4.52)

(4.52) can be written in the Cartesian coordinate system as

bm(x, y, z) =

 bx,m

by,m

bz,m

 = MVM
µ0

4π



3
(x− xm)(z− zm)

r5
m

3
(y− ym)(z− zm)

r5
m

3
(z− zm)2

r5
m

− 1
r3

m


(4.53)
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rm =
√
(x− xm)2 + (y− ym)2 + (z− zm)2 is the distance between the observation point

r and the position rm of the mth magnetic dipole. Positions rm of magnetic dipoles in
α-MDM are defined as

rm = r0 + qijk + ql ,


xm = x0 −

a
2
+ (i− 1

2
)∆a, i = 1, . . . , Na

ym = y0 −
a
2
+ (j− 1

2
)∆a, j = 1, . . . , Na

zm = z0 + (k− 1)∆h + zα, k = 1, . . . , Nh

(4.54)

where m = i + (j − 1)Na + (k − 1)N2
a is the index of the mth magnetic dipole, r0 =

[x0, y0, z0]
T is the position of the center of the PM lower base and zα = α∆h defines the

local z-position of the magnetic dipole in the corresponding voxel (Fig. 4.17). Selection
of the parameter α as α ∈< 0, 1 > ensures that all magnetic dipoles are located inside
respective voxels.

4.3.4. (α , β)-mdm of cylindrical permanent magnets

The axially magnetized cylindrical permanent magnet (M = M1z) of radius R and
height H is placed at r0 = [x0, y0, z0]

T (Fig. 4.18). The magnetic field outside a cylin-
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Fig. 4.18: Magnetic dipoles model (α, β)-MDM of a cylindrical permanent magnet

drical PM can be calculated using formulas (4.51) - (4.53) with different positions of
magnetic dipoles in MDM. Magnetic dipoles of (α, β)-MDM are localized at a regular
grid of voxels each having the same volume VM = V0/ND, where V0 = πR2H, and
ND is a total number of magnetic dipoles. The (α, β)-MDM grid consists of Nh slices.
Each slice contains one central cylindrical voxel (axial voxel) of radius r0 and height
∆h = H/Nh, and NR concentric rings with voxels of the form of a hollow cylinder
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segment of inner radius ri, outer radius ro, segment angle ϕ0, and the height ∆h. The
number of voxels (segments) Ni

S in the ith ring is determined as follows:

Ni
S = 4

⌊
π

2

(
i− 1

2

)⌋
> 4, i = 1, . . . , NR (4.55)

where b·c denotes the floor (greatest integer) function. Ni
S is always a multiple of 4 to

ensure the symmetry of the (α, β)-MDM. The total number of magnetic dipoles ND can
be found as

ND = NH

(
1 +

NR

∑
i=1

Ni
S

)
(4.56)

The radius r0 of central voxels is given by

r0 =

√
VM
π∆h

(4.57)

The inner and outer radii of ring voxels are given by the following recurrence:

ri+1 =

√
VM Ni

S
π∆h

+ r2
i , i = 1, . . . , NR − 1, r1 = r0, rNR = R (4.58)

Magnetic dipoles in ring voxels are located on a symmetry plane of the corresponding
voxel (Fig. 4.18) while dipoles in axial voxels are placed on the cylinder main axis.
Their positions in the slice are determined using the following formula ri

β =

{
0, i = 0 (axial voxel)

(1− β)ri + βri+1, i = 1, . . . , NR (ring voxels)

zα = α∆h

(4.59)

where parameters (α, β) ∈< 0, 1 > ensure that dipoles are located inside corresponding
voxels and are the same for voxels. The position rm = [xm, ym, zm]T of the mth magnetic
dipole is defined in the global Cartesian coordinate system as

rm = r0 + qijk =


xm = x0 + ri

β cos θj

ym = y0 + ri
β sin θj

zm = z0 + (k− 1)∆h + zα

 (4.60)

where r0 = [x0, y0, z0]
T is the position of the PM base center and θj is equal to

θj = 2π
j− 1

2

Ni
S

,


i = 1, . . . , NR

j = 1, . . . , Ni
S

k = 1, . . . , NH

(4.61)

Figure 4.19 shows sample grids of voxels for one slice of (αo, βo)-MDM together with
magnetic dipoles obtained for NR = {1, 6} and NH = {2, 18}, respectively. ND1 denotes
the number of magnetic dipoles in one slice.
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CYLINDER(EV): NR = 1, ND1 = 5, β = 0.38922 CYLINDER(EV): NR = 6, ND1 = 105, β = 0.50785

Fig. 4.19: Sample grids of voxels with magnetic dipoles (dipoles are marked with ×)

4.3.5. cuboid/cylinder - analytical formulas of magnetic flux density

The magnetic flux density B at the point r = [x, y, z]T outside a rectangular PM magne-
tized with the constant magnetization vector M = M1z shown in Fig. 4.20 can be found
using the charge model [42] with fictitious magnetic charges of density σm = µ0M · n
placed on the top (z = h + z0, n = 1z) and the bottom (z = z0, n = −1z) wall of PM.
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(b) Calculation setup used in [137]

Fig. 4.20: Charge model of a rectangular permanent magnet
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In this case, the magnetic flux density is described by the following formula

B(r) =
1

4π

∮
S

σm(r′)(r− r′)

|r− r′|3
dS′ =

=
µ0M
4π

a/2∫
−a/2

a/2∫
−a/2

 r− r′

|r− r′|3

∣∣∣∣∣
z′=z0

− r− r′

|r− r′|3

∣∣∣∣∣
z′=z0+h

 dx′dy′ (4.62)

where r = [x, y, z]T , r′ = [x′, y′, z′]T ,and B = [Bx, By, Bz]T .
Magnetic flux density components Bx, By and Bz at point r = [x, y, z]T produced by

the rectangular PM of dimensions 2a× 2b× 2c with the COG located at the origin of
the coordinate system and all edges parallel to the coordinate axes, magnetized along
z-axis with the constant magnetization M = M1z (Fig. 4.20b) are given according to
[137] by

Bx(x, y, z) =
µ0M
4π

ln
F2(−x, y,−z)F2(x, y, z)
F2(−x, y, z)F2(x, y,−z)

(4.63)

By(x, y, z) =
µ0M
4π

ln
F2(−y, x,−z)F2(y, x, z)
F2(−y, x, z)F2(y, x,−z)

(4.64)

Bz(x, y, z) =
µ0M
4π

[F1(x, y, z) + F1(−x,−y,−z)+

+ F1(x, y,−z) + F1(−x,−y, z)+

+ F1(−x, y, z) + F1(x,−y,−z)+

+ F1(−x, y,−z) + F1(x,−y, z)] (4.65)

where functions F1(·) and F2(·) are defined as:

F1(x, y, z) = arctan
(x + a)(y + b)

(z + c)
√
(x + a)2 + (y + b)2 + (z + c)2

(4.66)

F2(x, y, z) =
√
(x + a)2 + (y− b)2 + (z + c)2 + b− y√
(x + a)2 + (y + b)2 + (z + c)2 − b− y

(4.67)

The magnetic field generated by the cylindrical PM of radius R, height H, magne-
tized along main axis 1z with a constant magnetization vector M = M1z can be found
using the surface current model (Fig. 4.21). In this model, the PM is replaced by an
equivalent infinitely thin solenoid of radius R and height H defined by the surface
current density JS = M× n = M× 1r = M1ϕ. Using the Biot-Savart law, the magnetic
flux density of the PM can be calculated as:

B(r) =
µ0

4π

∮
S

JS(r′)× (r− r′)

|r− r′|3
dS′ (4.68)
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Fig. 4.21: Surface current model of a cylindrical permanent magnet

If the cylindrical permanent magnet 2R× H is localized in the cylindrical coordinate
system so that its COG coincides with the origin then the components Br, Bz of the
generated magnetic field are given by the following expressions [33]:

Br(r, z) =
µ0M

π
[α+C(k+, 1, 1,−1)− α−C(k−, 1, 1,−1)] (4.69)

Bz(r, z) =
µ0M

π

R
R + r

[β+C(k+, γ2, 1, γ)− β−C(k−, γ2, 1, γ)] (4.70)

where

z± = z± H
2

, γ =
R− r
R + r

, k± =

√
z2
± + (R− r)2

z2
± + (R + r)2

,

α± =
R√

z2
± + (R + r)2

, β± =
z±√

z2
± + (R + r)2

(4.71)

The function C(·) denotes the generalized complete elliptic integral [33] defined as:

C(kc, p, c, s) =
π/2∫
0

c cos2 ϕ + s sin2 ϕ

(cos2 ϕ + p sin2 ϕ)
√

cos2 ϕ + k2
c sin2 ϕ

dϕ (4.72)

The magnetic field on the cylinder axis (r = 0) is given by the following expression:

Br(0, z) = 0, Bz(0, z) = M
µ0

2

 z+√
z2
+ + R2

− z−√
z2
− + R2

 (4.73)
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4.3.6. magnetic dipoles models - optimal parameters

Parameters α and β in (4.54) and (4.59) can be found using the following minimization
procedure. First, a test region consisting of a regular grid of points positioned in the
region below the PM is defined (Fig. 4.22).
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..
.
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zNz Test
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}
Fig. 4.22: Test region used in minimization procedures

The test region is composed of Nz XY-grid point layers Gk : {xi = (i − 1)∆x, yj =
(j− 1)∆y, i = 1, . . . , Nx, j = 1, . . . , Ny} uniformly distributed along the z-axis at {zk =
−d0 − (k − 1)∆z, k = 1, . . . , Nz}. Due to symmetry of analyzed permanent magnets,
the test region is defined only in the first quadrant (x > 0, y > 0). In the test region
G = {Gk, k = 1, . . . , Nz}, the average normalized root mean square error (NRMSE) is
defined as follows:

NRMSEG =

√√√√ 1
Nz

Nz

∑
k=1

[
(εk

x)
2 + (εk

y)
2 + (εk

z)
2
]

(4.74)

εk
c =

√
1

Nx Ny
∑Nx

i=1 ∑
Ny
j=1

[
BMDM

c (xi, yj, zk)− BREF
c (xi, yj, zk)

]2
(max BREF

c −min BREF
c )|z=zk

100% (4.75)

where c ∈ {x, y, z}, εk
c is the NRMSE of the kth test layer, BMDM

c is the c-component
of the magnetic flux density calculated using the α- or (α, β)-MDM, BREF

c is the c-
component of the reference magnetic flux density found analytically or numerically.

To find optimal value αo of the α-MDM (for given number of magnetic dipoles), the
minimum of (4.74) is searched using golden section algorithm [111]. To find optimal
values αo and βo in the (α, β)-MDM, the minimum of (4.74) is searched using the
simplex search method [99]. In this case, αo, βo ∈< 0, 1 > and the initial guess is set to
(αo = βo = 1/2).

4.3.7. rectangular permanent magnet - results of simulations

The rectangular permanent magnet under investigation with a = 15 mm, h = 25 mm,
the magnetization µ0M = 1.17 T is located at the lift-off distance z0 = h0 = 1 mm
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above X0Y plane (see benchmark problems in [142]). The evaluated test region G in
the optimization procedure (Section 4.3.6.) consists of Nz = 5 layers z = zk with d0 =
−1 mm and ∆z = 1 mm, i.e., the closest test layer G1 is about 2 mm from the bottom
base of the cuboid. In each layer, a grid of Nx × Ny = 31× 31 points with grid step
∆x = ∆y = 1 mm in the first quadrant of X0Y is generated. The accuracy of the α-MD
models is investigated at test planes (z = zk) by calculating the NRMSE of magnetic
flux density produced by the optimal αo-MDM and using the analytic charge model.

Figure 4.23 shows results calculated for various number of magnetic dipoles used
in the αo-MD models. Results are collected in groups using Na (number of voxels

Fig. 4.23: NRMS errors of optimal αo-MD models versus a number of slices Nh

along a-edges) as a leading constant parameter and Nh (number of slices) as a varying
parameter. Figure 4.23 shows that for each Na group, the optimal number of slices
(i.e. the total number of dipoles) related to the minimum of NRMSE can be found,
e.g., for Na = {2 : 2 : 14}, the optimal numbers of slices equal Nh = {2, 5, 9, 13,
16, 20, 23} which correspond to minimum errors NMRSEopt = {1.52, 0.32, 0.07, 0.02,
0.006, 0.002, 0.001}%, respectively. The following conclusion can be formulated: more
dipoles is defined in one slice the higher is the optimal number of slices in the α-MDM
corresponding to the minimum of NRMSE.

Figure 4.24 presents NRMSE calculated for 0.5-MD models with dipoles located at
centers of voxels and the same Na groups as previously. Although shapes of NRMSE
group curves are similar to curves for αo-MD models, minimums of NRMSE for small
Na are located at higher number of slices, i.e., minimum errors NRMSE0.5 = {1.91, 0.36,
0.09, 0.02, 0.01, 0.003, 0.002}% correspond to Nh = {3, 6, 10, 13, 17, 20, 23}, respectively.
For α = 0.5, positions of the NRMSE minimums correspond to the magnetic dipole
models with voxels ∆a × ∆a × ∆h whose shape is closest to the cube (∆a3), i.e., if
Na is given, then the number of slices ensuring the minimum of NRMSE is equal to
Nh = bh/∆ac, where ∆a = a/Na, and b·c is the floor function.
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Fig. 4.24: NRMS errors of 0.5-MD models versus a number of slices Nh

Figure 4.25 shows the dependence of optimal parameter αo on the total number of
magnetic dipoles used in αo-MD models. It can be seen that αo corresponding to the
optimal number of slices is less than α = 0.5 for each Na group and strives to 0.5 (the
center of voxel) when the number of dipoles increases.

Fig. 4.25: The optimal parameter αo versus the total number of magnetic dipoles in αo-MD
models (blue circles mark αo corresponding to the optimal number of slices for each Na group)
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Figure 4.26 shows sample distributions of magnetic flux densities Bx and Bz in the
vicinity of the magnet calculated for y = 0 and z = −1 mm ( the distance to the
PM equals d = 2 mm, and z0 = h0 = 1 mm denotes the PM lift-off) for two optimal
αo-MD models: the first with ND = 2× 2× 2 = 8 dipoles, and the second one with
ND = 8× 8× 13 = 832 dipoles (By = 0 at y = 0, due to symmetry). The magnetic

LINE: y = 0, z = −1 mm, PM(CUB): a2 × h = 152 × 25, h0 = 1 mm, ND = 8
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Fig. 4.26: Magnetic flux density distributions - the comparison of optimal αo-MDM with the
analytical model (ANA): (1) ND = 8, αo = 0.43842, NMRSEopt = 1.52% (up), (2) ND = 832,
αo = 0.4992, NMRSEopt = 0.02% (down)

field far away from the PM is good approximated by both αo-MD models. However,
under the PM (x ∈< −7.5 mm, 7.5 mm >), significant discrepancies of the first model
(ND = 8) comparing to the analytical solution can be observed. The maximum of Bx
is smaller and Bz drops to a local minimum. The reason for this is the distance between
dipoles in the αo-MDM (∆a = 7.5 mm) which is much greater than the distance of test
points to the PM (d = 2 mm). In this case, the closest magnetic dipole has the strongest
influence on the magnetic field calculated at the actual test point. This effect, observed
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as oscillations of magnetic field under the PM, is called a dipolar effect. If the distance
between dipoles is small enough, e.g. for ND = 832, ∆a = 1.875 mm, the dipolar effect
is negligible. It should also be noted that for all cases, the NRMSE of Bz component is
larger than the error of Bx component.

4.3.8. cylindrical permanent magnet - results of simulations

The cylindrical PM of dimensions 2R × H = 15 mm × 25 mm, located at the lift-off
distance z0 = 1 mm above X0Y plane, and axially magnetized with the magnetization
µ0M = 1.17 T is investigated. A set of (α, β)-MD models specified by the number of
concentric rings in one slice NR ∈ {1 : 1 : 7} and the number of slices NH ∈ {1 : 1 : 25}
is studied. Optimal parameters αo and βo in (α, β)-MD models are determined using
the same test region G as in the previous section. Results (NRMSE) are collected in
groups using NR as a leading constant parameter and NH as a varying parameter.

Figure 4.27 shows NRMSE of (αo, βo)-MD models for optimal parameters αo and βo.
Similar to rectangular permanent magnets, the minimum of NRMSE can be found for
each NR group. The optimal numbers of slices are equal to NH = {2, 5, 8, 12, 15, 18,
23} which corresponds to the following errors: NMRSEopt = {2.19, 0.89, 0.36, 0.12,
0.05, 0.02, 0.01}%.

Fig. 4.27: NRMS errors of the optimal (αo, βo)-MD models versus a number of slices NH
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Figure 4.28 presents distributions of NRMS errors for (0.5, 0.5)-MD models with
dipoles located at centers of voxels. The minimums of NRMSE for each NR group are
found for NH = {3, 6, 9, 12, 14, 17, 20} as NRMSE0.5 = {2.74, 0.97, 0.40, 0.13, 0.06, 0.05,
0.04}%, respectively. The optimal number of slices for (0.5, 0.5)-MD models can be
estimated using the following formula: NH = bH/∆r + δc, where ∆r = R/NR, and δ
is an arbitrary constant equals δ = 0.2. It can be observed that in this case the number
of slices is greater than NH for the optimal αo, βo only for the first three NR groups.

Fig. 4.28: NRMS errors of (0.5, 0.5)-MD models versus a number of slices NH

The distribution of parameters αo and βo versus the total number of dipoles ND
is shown in Fig. 4.29. It can be observed that the optimal values of αo as well as βo
strive to 0.5 when the total number of dipoles increases (blue circles). Generally, the
errors of (αo, βo)-MD models are higher than for the models of rectangular permanent
magnets with comparable number of magnetic dipoles, i.e., to achieve similar accuracy,
the MDM with more dipoles has to be applied for a cylindrical permanent magnet.



Fig. 4.29: The optimal parameters αo, βo versus the total number of magnetic dipoles ND (blue
circles mark αo and βo related to the optimal number of slices NH for each NR group)
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Figure 4.30 presents sample distributions of magnetic flux density under the cylindri-
cal PM (2R× H = 15 mm× 25 mm, lift-off z0 = h0 = 1 mm) at y = 0 and z = −1 mm
for the following (αo, βo)-MD models: (1) ND = 10, αo = 0.44007, βo = 0.38922, (2)
ND = 1890, αo = 0.49802, βo = 0.50779. The corresponding normalized root mean
square errors (NMRSEopt) are equal to 2.19% and 0.02%, respectively.
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Fig. 4.30: Magnetic flux density distributions - the comparison of optimal (αo, βo)-MDM with
the analytical model (ANA): (1) ND = 10 (up), (2) ND = 1890 (down)

4.3.9. résumé

In Section 4.3., modeling of 3D permanent magnets using magnetic dipoles models
was presented. Two discrete models for modeling permanent magnets are introduced,
namely: (1) α-MDM for the rectangular PM, and (2) (α, β)-MDM for the cylindrical
PM. The procedure of finding optimal parameters αo and βo in the MDM is described
in details. Additionally, analytical formulas for the magnetic flux density of rectan-
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gular and cylindrical PM at any point outside the PM are given (based on [33, 137]).
Simulation results are also presented and discussed.

4.4. calculation of forces in 3d let models

4.4.1. problem description

A 3D permanent magnet of arbitrary form (e.g. cylinder, cuboid, Halbach cylinder, etc.)
is placed at a lift-off distance z0 above a moving conducting plate (L×W×D, electrical
conductivity σ0): The plate contains a defect defined by cx × cy × cz located at depth
d. Parameters cx, cy, and cz enable to define defects of following shapes: cuboids, if all
parameters are grater than 0, cylinders, if cy = 0, and spheres, if cy = cz = 0, where cx
denotes a diameter of cylinder / sphere, respectively.

Figure 4.31 shows sample configuration of 3D LET model with a rectangular perma-
nent magnet.

x

y

z2a

M
Fx

Fz
Fy

v

Permanent
magnet

Conduc�ng plate s
0

D

W

Defect: (c ´c ´c )x y z

L

h0

2a
h

Fig. 4.31: Sample rectangular permanent magnet (2a× 2a× h) above a moving conducting plate
(L×W × D) with a surface rectangular defect (cx × cy × cz, d = 0)

The principal difference between 3D and 2D LET models lies in the fact that the third
component of the Lorentz force Fy (side force) exerts on the PM if the PM is located
outside the symmetry line of the 3D plate-defect configuration.

The conducting plate can be treated as a solid conductor with a constant, homoge-
neous electrical conductivity σ0 or as an assembly of N conducting sheets of thick-
ness ∆h = D/N. The second model is especially useful for modeling experimental
LET configurations [125, 138] where preparing LET setups with defects at various
depths is much easier when stacked sheets are used. If thickness ∆h of sheets is small
enough and sheets are isolated from each other (e.g. using thin paper sheets) then
an anisotropic model of electrical conductivity can be applied. In this case the electri-
cal conductivity of stacked sheets can be described by a diagonal conductivity tensor
[σ] = diag(σxx, σyy, σzz), where σxx = σyy = σ0 and σzz = 0.
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4.4.2. lorentz forces for plates without defects

Analytical calculations of Lorentz forces exerted on the PM located above the moving
conducting plate without any defects are only possible if the width W and the length
L of the analyzed plate are much greater than the dimensions of the PM, i.e., the
plate can be treated as infinitely wide. It is also assumed that the permeability and the
conductivity of the plate are constant and equal µ0 and σ0, respectively. The velocity
v of the moving plate is also constant and is much less than the light velocity, i.e.,
the term of the displacement current in field equations can be omitted. Additionally,
assuming that the PM is described by a constant magnetization vector M, it can be
substituted by an infinitely thin solenoid of length Hm with a surface current density
JM, where JM = M.

First, the Lorentz force exerted on the infinitely thin coil with current I0 = JM∆z
located at z = z0 above the moving conducting plate of thickness D is calculated.
Using approach presented in [114], the problem can be described in the coordinate
system fixed to the coil (rest frame) by the following set of equations:

∇2H = 0, Region: I, II, IV (4.76)

∇2H = µ0σ0v
∂H
∂x

, Region: III (4.77)

∇ ·H = 0, Region: all (4.78)

where regions I-IV are defined in Fig. 4.32.
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Fig. 4.32: Calculation setup for the permanent magnet above a moving conducting plate
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For solving (4.76) - (4.78), 2D Fourier transform is applied:

F̂ = F̂(kx, ky) =

∞∫
−∞

∞∫
−∞

F(r)e−j(kx x+kyy)dxdy (4.79)

where r = x1x + y1y + z1z, and kx, ky are transform variables. The inverse 2D Fourier
transform is given by:

F(r) =
(

1
2π

)2 ∞∫
−∞

∞∫
−∞

F̂(kx, ky)ej(kx x+kyy)dkxdky (4.80)

To simplify the notation, F̂(kx, ky) is further replaced with the symbol F̂. After applying
(4.79) to (4.76) - (4.78), the following equations are obtained

−(k2
x + k2

y)Ĥ +
d2Ĥ
dz2 = 0, Region: I, II, IV, (4.81)

−(k2
x + k2

y)Ĥ +
d2Ĥ
dz2 = jkxµ0σ0vĤ, Region: III, (4.82)

jkx Ĥx + jky Ĥy +
dĤz

dz
= 0, Region: all. (4.83)

The solution of (4.81) - (4.83) can be written as:

Ĥ1 = Ĥ(i) + Ĥ(e) = Ĥ(i) + âe−kz, Region: I, II (4.84)

Ĥ2 = b̂e−αz + ĉeαz, Region: III (4.85)

Ĥ3 = d̂ekz, Region: IV (4.86)

where α2 = jµ0σ0vkx + k2, k2 = k2
x + k2

y, and â, b̂, ĉ, d̂ are unknown complex con-

stants defined as â = [âx, ây, âz]T , b̂ = [b̂x, b̂y, b̂z]T , ĉ = [ĉx, ĉy, ĉz]T , d̂ = [d̂x, d̂y, d̂z]T ,
respectively. Ĥi = [Ĥx,i, Ĥy,i, Ĥz,i]

T denotes the resultant magnetic field in the ith re-
gion (i = 1, 2, 3) while Ĥ(i) is the primary (incident) magnetic field produced by the
current coil in absence of the plate and Ĥ(e) is the magnetic field produced by eddy
currents induced in the moving conducting plate.

The Fourier transform of the primary magnetic field Ĥ(i) of a thin wire coil located
at z = z0 and carrying a steady current I0 can be found in regions I and II as

Region I :


Ĥ(i)
||,1 = − 1

2

(
1z × Ĵs

)
e−k(z−z0)

Ĥ(i)
z,1 = j

kx

k
Ĥ(i)

x,1 + j
ky

k
Ĥ(i)

y,1

(4.87)

Region II :


Ĥ(i)
||,2 = 1

2

(
1z × Ĵs

)
ek(z−z0)

Ĥ(i)
z,2 = −j

kx

k
Ĥ(i)

x,2 − j
ky

k
Ĥ(i)

y,2

(4.88)
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where Ĥ(i)
||,n = Ĥ(i)

x,n1x + Ĥ(i)
y,n1y, n = 1, 2 and Ĵs is 2D Fourier transform of the coil with

current. To complete formulas (4.87) and (4.88), it is necessary to find the 2D Fourier
transform Ĵs.

First, it is analyzed an infinitely thin rectangular coil 2a× 2b with a current given as

Js(x, y) = I0

Π
( x

2a

)
δ(y + b)−Π

( x
2a

)
δ(y− b)

Π
( y

2b

)
δ(x− a)−Π

( y
2b

)
δ(x + a)

 (4.89)

where I0 = M∆z, δ(·) is the Dirac function and Π(·) is the rectangle function [14]
defined as:

Π(x) =


1, |x| < 1

2
1
2 , |x| = 1

2

0, |x| > 1
2

(4.90)

The Fourier transform Ĵs of (4.89) is given by:

Ĵs =

[
Ĵsx

Ĵsy

]
= j4I0 sin(kxa) sin(kxb)


1
kx

− 1
ky

 (4.91)

2D Fourier transform of an infinitely thin loop of radius R with a current defined as

Js(x, y) = I0

[
−δ(r− R) sin ϕ

δ(r− R) cos ϕ

]
(4.92)

can be calculated as

Ĵs =

[
Ĵsx

Ĵsy

]
= j2πRI0J1(kR)


ky

k

− kx

k

 (4.93)

where r2 = x2 + y2, sin ϕ = y/r, cos ϕ = x/r, and J1(·) is the first order Bessel function
of the first kind [1]

J1(z) =
j
π

π∫
0

e−jz cos θ cos θdθ (4.94)

Unknown constants â, b̂, ĉ, d̂ in (4.84) - (4.86) can be determined from the continuity
conditions at z = 0 (i = 2) and z = −D (i = 3):

Ĥt,i = Ĥt,i+1 (4.95)

B̂n,i = B̂n,i+1 (4.96)
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The indexes t and n denote tangential and normal components of vectors H and B,
respectively. Additionally to (4.95) - (4.96), the condition ∇× B|z = 0 (z-component of
∇× B) in the region III has to be taken into account because the induced eddy cur-
rents in the conducting plate flow only in XY-planes (Jz = 0). After a few elementary
transformations, the constant â can be found as

â =


âx = T(k, β) Ĥ(i)

x,2

∣∣∣
z=0

= 1
2 T(k, β)

(
1z × Ĵs

)
e−kz0

ây =
ky

kx
âx

âz = j
k
kx

âx

 (4.97)

where T(k, β) is given by the expression

T(k, β) =
(β2 − 1) tanh βkD

2β + (1 + β2) tanh βkD
(4.98)

where β = α/k, k2 = k2
x + k2

y, and α2 = jµ0σ0vkx + k2. The coefficient T(k, β) can be
treated as a "reflection coefficient" of the incident magnetic field "reflected" from the
moving conducting plate [84, 85, 114]. Finally, using (4.88) and (4.97), the magnetic
field Ĥ(e) in regions I and II produced by eddy currents in the moving plate can be
written as

Ĥ(e)
|| = T(k, β) Ĥ(i)

||,2

∣∣∣
z=0

e−kz = 1
2 T(k, β)

(
1z × Ĵs

)
e−k(z+z0) (4.99)

Ĥ(e)
z = −j 1

2 T(k, β)

(
kx

k
Ĵsye−kz0 − ky

k
Ĵsxe−kz0

)
e−kz (4.100)

The Lorentz force exerted on a thin coil above a moving conducting plate can be
calculated using the following formula [85]:

F = µ0

∞∫
−∞

∞∫
−∞

Js(r)×H(e)(r)
∣∣∣
z=z0

dxdy (4.101)

According Parseval’s theorem [14], (4.99) - (4.100) are rewritten in Fourier domain as

F =
µ0

4π2

∞∫
−∞

∞∫
−∞

Ĵ∗s × Ĥ(e)
∣∣∣
z=z0

dkxdky (4.102)

After substitution (4.99) - (4.100) into (4.102), the following expressions are received

Fx = −j
µ0

8π2

∞∫
−∞

∞∫
−∞

T(k, β)

(
kx

k

∣∣∣ Ĵsy

∣∣∣2 − ky

k
Ĵ∗sy Ĵsx

)
e−2kz0 dkxdky (4.103)

Fy = 0 (4.104)

Fz =
µ0

8π2

∞∫
−∞

∞∫
−∞

T(k, β)

(∣∣∣ Ĵsx

∣∣∣2 + ∣∣∣ Ĵsy

∣∣∣2) e−2kz0 dkxdky (4.105)
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The side force Fy equals 0 due to the x-symmetry of the coil. Using the symmetry of Ĵs
in the Fourier domain (see (4.91) and (4.93))

Ĵsx(kx) = Ĵsx(−kx), Ĵsx(ky) = − Ĵsx(−ky),

Ĵsy(kx) = − Ĵsy(−kx), Ĵsy(ky) = Ĵsy(−ky)

Equations (4.103) - (4.105) can be simplified to the following form

Fx =
µ0

2π2

∞∫
0

∞∫
0

=[T(k, β)]

(
kx

k
| Ĵsy|2 −

ky Ĵ∗sy Ĵsx

)
e−2kz0 dkxdky (4.106)

Fz =
µ0

2π2

∞∫
0

∞∫
0

<[T(k, β)]
(
| Ĵsx|2 + | Ĵsy|2

)
e−2kz0 dkxdky (4.107)

To calculate Lorentz force FPM exerted on the infinitely thin solenoid (Fig. 4.32), and
thereby on the permanent magnet, it is necessary first to sum (integrate) at z = 0 the
incident magnetic field contributions from infinitely thin coils evenly distributed along
the solenoid. The result has the following form:

Ĥ(i)
||,2

∣∣∣
z=0

= 1
2

(
1z × Ĵs

) e−kh0

k

(
1− e−kHm

)
(4.108)

Ĥ(i)
z,2

∣∣∣
z=0

= −j
kx

k
Ĥ(i)

x,2

∣∣∣
z=0
− j

ky

k
Ĥ(i)

y,2

∣∣∣
z=0

(4.109)

Next, the magnetic field produced by induced eddy currents in the plate (4.99) - (4.100)
has to be integrated along the solenoid length [84]. Finally, the following expressions
for Lorentz forces exerted on a permanent magnet (possessing x-symmetry) above
moving conducting plate are obtained:

FPM
x =

µ0

2π2

∞∫
0

∞∫
0

=[T(k, β)]
(

kx| Ĵsy)|2 − ky Ĵ∗sy Ĵsx

)
×

×

(
1− e−kHm

)2

k3 e−2kh0 dkxdky, (4.110)

FPM
y = 0 (4.111)

FPM
z =

µ0

2π2

∞∫
0

∞∫
0

<[T(k, β)]
(
| Ĵsx|2 + | Ĵsy|2

)
×

×

(
1− e−kHm

)2

k2 e−2kh0 dkxdky. (4.112)

Formulas (4.110) and (4.112) are verified using the finite element method applied
to similar configuration setup as for analytical method. Figures 4.33 and 4.34 show
normalized Lorentz forces calculated using (4.110) - (4.112) and the FEM.
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Fig. 4.33: Normalized Lorentz forces exerted on the rectangular PM (2a× 2a× h) located above
a moving conducting plate: (ANA) - (4.110) - (4.112), (FEM) - finite element method

Fig. 4.34: Normalized Lorentz forces exerted on the cylindrical PM (2R × H) located above a
moving conducting plate: (ANA) - (4.110) - (4.112), (FEM) - finite element method

The forces are plotted versus normalized velocity v/v0 for two permanent magnets
defined as: (1) cuboid 2a× 2a× h = 15 mm× 15 mm× 25 mm, and (2) cylinder 2R×
H = 15 mm× 25 mm. The reference velocity v0 corresponds to the condition Fx = Fz.
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In both cases, the lift-off h0 of the PM equals 1 mm and the magnetization M is defined
as M = M1z, where M = Br/µ0 and Br is the remanence equals 1.17 T. The electrical
conductivity σ0 and thickness D of the moving plate are equal to 30.61 MS/m and
100 mm, respectively.

As a reference force F0, an asymptotic limit of (4.112) for σ0v→ ∞ is chosen:

F0 =
µ0

2π2

∞∫
0

∞∫
0

(
| Ĵsx|2 + | Ĵsy|2

) (1− e−kHm
)2

k2 e−2kh0 dkxdky (4.113)

It can be observed a very good agreement between forces calculated analytically using
(4.110) - (4.112) and obtained from FEM simulations. The normalized root mean devia-
tion (NRMD) between ANA and FEM (defined similarly as (4.41)) is equal to 0.42% for
both simulated cases.

The presented approach enables also to calculate induced eddy currents in the mov-
ing plate in easy way. Using J = ∇×H2, the 2D Fourier transform of the eddy current
density Ĵ takes the form

Ĵ =

[
Ĵx

Ĵy

]
= (1− β)

1− 1−β
1+β e−2βk(D+z)

1−
(

1−β
1+β

)2
e−2βkD

eβkz
(

1− e−kHm
)

e−kh0

[
Ĵsx

Ĵsy

]
(4.114)

Next, applying symmetry properties of Ĵs in the Fourier domain, eddy current density
in any point r of the plate is determined from the inverse 2D Fourier transform of the
following form:

Jx(r) =
1

π2

∞∫
0

∞∫
0

sin(kyy)
{

sin(kxx)<[ Ĵx] + cos(kxx)=[ Ĵx]
}

dkxdky (4.115)

Jy(r) =
1

π2

∞∫
0

∞∫
0

cos(kyy)
{

sin(kxx)=[ Ĵy]− cos(kxx)<[ Ĵy]
}

dkxdky (4.116)

where r = x1x + y1y + z1z.
Figures 4.35 and 4.36 show stationary eddy current distributions on the top surface

(z = 0) of the plate moving with velocity v = 10 m/s. The distributions are calculated
with help of (4.115) - (4.116) (ANA) using the same models as for force calculations.
For comparison, results of FEM simulations for equivalent models are also presented.
A very good agreement of both solutions can be observed.
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Fig. 4.35: Permanent magnet (Cuboid): eddy currents density distribution on the top surface of
the moving conducting plate (z = 0) for v = v1x, v = 10 m/s
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Fig. 4.36: Permanent magnet (Cylinder): eddy currents density distribution on the top surface of
the moving conducting plate (z = 0) for v = v1x, v = 10 m/s

Figure 4.37 depicts eddy current distributions on the PM y-symmetry plane calcu-
lated with (4.115) - (4.116). In the plots only the distribution of Jy component is shown
because Jx = 0 at y = 0.
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Fig. 4.37: Eddy currents in the moving conducting plate on the y-symmetry plane of the perma-
nent magnet (y = 0) for v = v1x, v = 10 m/s

It should be noted that the distortion of induced eddy currents in the moving plate
follows the direction of the plate velocity.

4.4.3. 3d defect response signals

Analytical calculations of response signals (defined in Section 4.2.2.) produced by 3D
defects located in a moving plate under a fixed permanent magnet are only possible in
an approximate way. The approximate method presented in [105] is a simple extension
of the method described in Section 4.2. using a superposition of eddy currents induced
in the plate without defect and in the virtual region covering the defect region for a
slowly moving conducting plate. It uses a weak reaction approach for a description of
electromagnetic fields and approximates the permanent magnet with a single magnetic
dipole. It is assumed that the width and the length of the plate is much greater than the
size of the PM and the plate itself is represented by a package of thin conducting sheets
isolated from each other. The use of a package of sheets instead of a solid block greatly
facilitates the preparation of the experiment where the same defect at various depths
can be analyzed by a simple exchange of the appropriate sheets. The consequence of
using isolated sheets is the assumption that the electrical conductivity of the plate can
be modeled as an anisotropic one, i.e., it can be described by the diagonal conductivity
tensor [σ] = diag(σxx, σyy, σzz) with σzz = 0, and σxx = σyy = σ0. Additionally, the
defect is treated as an ideal one with the electrical conductivity equals 0. The paper
[105] describes a defect reconstruction procedure in which only normalized defect re-
sponse signals are used. However, if not-normalized absolute defect response signals
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are considered, the significant errors of calculated ∆Fx and ∆Fz DRS profiles can be
observed in comparison to the reference FEM solution.

Figure 4.38 shows sample DRS profiles in the vicinity of the defect calculated at
y = 0 according to [105] for the following setup: the rectangular permanent magnet
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PM-N35(1): w2 × h = 15.02 × 25.0, h0 = 1.0 mm
DEF: 12× 2× 2× 4 mm, NRMSE(ǫx, ǫz) = 35.79(29.03, 20.93)%
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Fig. 4.38: Sample DRS profiles calculated using the single magnetic dipole model from [105]

w2× h = 15 mm× 15 mm× 25 mm of remanence Br = 1.17 T is hanged at a lift-off h0 =
1 mm above the plate with a thickness of D = 100 mm and the electrical conductivity
σxx = σyy = σ0 = 30.61 MS/m, σzz = 0, moving with the velocity v = 1 cm/s along
the x-axis. The defect cx × cy × cz = 12 mm × 2 mm × 2 mm is located at the depth
d = 4 mm under the upper surface of the plate. The permanent magnet is modeled by a
single magnetic dipole located locally at [0.5w, 0.5w, 0.4181h] found with the procedure
described in Section 4.3.6.. Current density voxels in a defect region are defined by
∆x = ∆y = 1 mm, ∆z = 2 mm, i.e., the defect region is modeled by a regular one layer
grid of rectangular voxels. The normalized root mean square error (NRMSE) defined
by (4.41) - (4.44) is equal to 35.8% in this case. The NRMSE can be reduced when the
PM is modeled by more magnetic dipoles using e.g. α-MDM (Section 4.3.3.).

Figure 4.39 shows DRS profiles calculated for the PM modeled with the optimal α-
MDM consisting of ND = 1331 magnetic dipoles. Although, the NRMSE is reduced
(NRMSE = 29.3%), the calculated DRS profiles are still far away from the reference
FEM profiles. Further NRMSE reduction of DRS profiles calculated with the approach
presented in [105] is not possible even by increasing the number of voxels in the defect
region. In order to clarify this issue, the eddy current density distribution around the
defect is calculated. In the analyzed problem, the eddy currents J induced in a large
conductive metal plate without defect moving under the PM along x-axis flow only in



4.4. calculation of forces in 3d let models 145

∆Fz (FEM)

∆Fz (DIP)

∆Fx (FEM)

∆Fx (DIP)

PM-N35(1331): w2 × h = 15.02 × 25.0, h0 = 1.0 mm
DEF: 12× 2× 2× 4 mm, NRMSE(ǫx, ǫz) = 29.39(22.17, 19.29)%
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Fig. 4.39: DRS profiles calculated with α-MDM consisting of ND = 1331 magnetic dipoles

XY-planes, i.d. z-component of J equals 0. In addition, the electrical conductivity of
the plate is assumed to be anisotropic with σzz = 0. Therefore, the deformation of eddy
currents caused by the defect is possible only in the XY-layer of thickness cz coincident
with the defect.

Figure 4.40 shows eddy current distributions in the defect layer in the vicinity of the
defect found according to the approach presented in [105]. The distributions are plotted
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Fig. 4.40: Current density distributions in the layer with a defect for the moment when the PM
is above the defect center (xm = 0)
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for the moment when the PM is just above the center of the defect (xm = 0, xm is the
actual x-position of the PM coordinate system). J0 denotes the induced eddy current
density in a moving plate in the absence of a defect. JD is an artificial current density
vector describing induced eddy currents in the region of conductivity [σ] introduced in
place of the defect. Eddy currents around the defect are described by the superposition
of J0 and JD as J = J0 − JD. As it can be seen in Fig. 4.40c, this operation gives the
eddy currents distribution which is not correct because the continuity ∇ · J = 0 of the
current density near the defect is not fulfilled.

The correct eddy current distribution calculated by FEM is shown in Fig. 4.41. It can

Fig. 4.41: Distribution of eddy currents near a defect calculated by FEM

be concluded that for the proper description of eddy currents in a moving conducting
plate with a defect is not enough to subtract only the artificial eddy currents flowing in
the region covering the defect from the distribution found in a plate without a defect
because this operation does not take into account the impact of the defect on the eddy
currents in the surrounding area. This explains also the relatively large errors of DRS
profiles calculated with [105] approach.

In the following sections a new method based on a concept of an extended area
approach (EAA) will be introduced. This new method enables to calculate DRS profiles
with better accuracy. Before the introduction of the EAA, the analysis of the problem
of finding a flow of electric current around a circular hole in a thin large conducting
sheet is presented.

4.4.4. circle-shaped hole in a thin conducting sheet

The flow of electric current in a thin very large conducting sheet is considered. The
sheet is uniform with electrical conductivity σ = σ0 except near the origin where a
circle-shaped hole of radius R has been drilled (Fig. 4.42). Far away from the origin, the
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Fig. 4.42: Electric current in a thin conducting sheet with a circular hole

current density is uniform with J = J0 = −J01y. In the vicinity of the hole, the current is
distorted because it has to flow around the hole. Introducing the electric scalar potential
V as E = −∇φ, the current field problem can be described in cylindrical coordinates
(r, ψ, z) by the following Laplace equation:

∇2φ =
∂2φ

∂r2 +
1
r

∂φ

∂r
+

1
r2

∂2φ

∂ψ2 = 0 (4.117)

together with the boundary conditions

r = R : Jn = 0,
∂φ

∂r
= 0 (4.118)

r → ∞: J = −J01y, V = 1
σ0

J0r sin ψ (4.119)

The unique solution which satisfies Laplace equation (4.117) and boundary conditions
(4.118) - (4.119) is given by

φ = φ0 +
J0

σ0
r

[
1 +

(
R
r

)2
]

sin ψ (4.120)

where φ0 is an arbitrary constant potential.
In cylindrical coordinates, the current density vector can be calculated as

J = σ0E = −σ0∇φ = −σ

(
∂φ

∂r
1r +

1
r

∂φ

∂ψ
1ψ +

∂φ

∂z
1z

)
(4.121)

Having (4.120) in (4.121) is obtained

J = −J0

[
1−

(
R
r

)2
]

sin ψ1r − J0

[
1 +

(
R
r

)2
]

cos ψ1ψ (4.122)
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Fig. 4.43: Current density distribution in the vicinity of a circular hole

Sample current density distribution near the circle-shaped hole of radius R = 5 mm is
shown in Fig. 4.43. Equation (4.122) can be divided into two parts, the primary input
current J0 and the distortion current j introduced by the hole, as

J = J0 − j (4.123)

with j given by

j =
(

R
r

)2 (
−J0 sin ψ1r + J0 cos ψ1ψ

)
(4.124)

Using the vector identity

J0 = −J0 sin ψ1r − J0 cos ψ1ψ =
J0 · r

r2 r + (J0 · 1ψ)1ψ

the distortion current density in any point r outside the hole can be rewritten as

j =
(

R
r

)2 (
2

J0 · r
r2 r− J0

)
(4.125)

A current dipole of the moment p placed in a large thin conducting plate of thickness
δz at the origin of the coordinate system evokes in any point r of the plate a flow of
electric current described by the current density vector jp (see (4.32))

jp =
1

2πr2δz

(
2

p · r
r2 r− p

)
(4.126)
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Introducing at the center of the hole an equivalent current dipole of the moment p =
J0πR2δz = J0V0, (4.125) can be rewritten as

j =
1

πr2δz

[
2
(J0V0) · r

r2 r− J0V0

]
=

1
πr2δz

(
2

p · r
r2 r− p

)
= 2jp (4.127)

where V0 is the volume of the hole.
Thus, it has been shown that a distortion current caused by a circular hole in a

large thin conducting plate in which flows a uniform electric current can be expressed
through the current density field produced by a single current dipole located at the
center of the hole.

Figure 4.44 shows a sample distribution of a distortion current field in a vicinity of
a circle-shaped hole in a thin metallic plate. The coefficient in front of jp in (4.127) is
named as a dipolar correction factor (DCF) χDCF, i.e., χDCF = 2. Later, it will be shown
that DCF depends on the shape of the hole drilled in the plate.

y
[m

m
]

x [mm]

j - R = 5.0 mm
(Analytical solution)

−15 −12 −9 −6 −3 0 3 6 9 12 15
−15

−12

−9

−6

−3

0

3

6

9

12

15

(a) Analytical solution - j

y
[m

m
]

x [mm]

2jp - R = 5.0 mm, NV D = 1, χDCF = 2.0
NRMSE(ǫx, ǫy) = 0.00(0.00, 0.00)%

−15 −12 −9 −6 −3 0 3 6 9 12 15
−15

−12

−9

−6

−3

0

3

6

9

12

15

(b) Equivalent dipole - 2jp

Fig. 4.44: Distortion current near a hole in a large thin conducting plate

4.4.5. extended area approach

Based on the results found in the previous section, a new semi-analytical approach for
calculating the distortion current density near the hole in the thin conducting plate is
introduced now. The approach is called the extended area approach (EAA).

It is considered the thin conducting plate of thickness δz parallel to X0Y plane. First,
the hole is substituted with a regular equidistant grid of NVD voxels of volume VD =
∆x∆yδz, where ∆x and ∆y are grid densities in x- and y-directions. At the center of
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each hole voxel ri, a current dipole of the moment pi = jD,iVD is placed, where jD,i
denotes the eddy current density vector at ri induced by the primary magnetic field
in the absence of the hole. The distortion current density at any point r in a large thin
conducting plate outside the hole can be calculated according to

jE(r) = χDCF
VD

2πδz

NVD

∑
i=1

[
2

jD,i · (r− ri)

|r− ri|4
(r− ri)−

jD,i

|r− ri|2
]

(4.128)

where χDCF is the dipolar correction factor. Having the distortion current density jE
outside the hole and the "defect" current density jD inside the hole, the resulting den-
sity J of currents flowing around the hole can be obtained using the following super-
position

J = J0 − jD − jE (4.129)

where J0 is the current density in the plate without the hole.
To estimate a dipolar correction factor for holes of arbitrary shapes, distortion current

distributions are analyzed for a series of elliptic holes defined as cx × cy, where cx
and cy denote the x- and y-axis of the elliptic hole. A distortion current outside an
elliptic hole can be easy obtained in the elliptic-cylinder coordinate system (η, ψ, z)
[95], where the coordinate iso-surfaces are respectively elliptic cylinders (η = const),
hyperbolic cylinders (ψ = const), and planes (z = const). The relation between (η, ψ, z)
and Cartesian coordinates (x, y, z) is given by:

x = a cosh η cos ψ

y = a sinh η sin ψ

z = z

(4.130)

where a = 1
2

√
c2

x + c2
y. When a uniform excitation electric current in a thin conducting

sheet flows opposite to the direction of the y-axis, the distortion current density j
around the elliptic hole cx × cy located at the center of the coordinate system (see for
comparison Fig 4.42) is described as follows [95]:

j =

[
jx
jy

]
=

1
2

J0

(
e2η0 + 1

) −
sin ψ

cosh 2η − cos 2ψ

sinh 2η

cosh 2η − cos 2ψ
− 1

 (4.131)

where η0 = artanh(cy/cx) defines the elliptic contour of the hole. Analyzing distor-
tion current distributions for various elliptic holes, it has been found that the dipolar
correction factor χDCF can be approximated by the following expression

χDCF ' 1 +
cx

cy
(4.132)

To illustrate above, Fig 4.45 shows local relations between distortion currents for two
sample elliptic holes calculated analytically using (4.131) and obtained with the EAA.
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Fig. 4.45: Distribution of local dipolar correction factors

The relations are calculated along 0X and 0Y lines outside holes as a function of a
distance d to the hole contour. Based on the above analysis, the DCF for an arbitrary
hole with the outline given by cx × cy × δz is generally defined as

χDCF = 1 +
cx

cy
(4.133)

In the case of circle-shaped holes, cx = cy where cx is equal to the diameter 2R of the
circle, and χDCF = 2 as it is shown in the previous section. For other shapes, i.e., elliptic
or rectangular holes, cx and cy are the x- and y-axes of the ellipse or the length and
the width of the rectangle, respectively. Although the DCF given by (4.133) is only an
indicative factor it enables to model the distortion field around holes of various shapes
with a sufficient accuracy.

Figure 4.46 shows sample current density distributions around holes of various
shapes calculated with the EAA. In this case, normalized root mean square errors
of the EAA for the circular and elliptic hole are equal to 2.47% and 1.98%, respectively.

In the presented examples, current distributions obtained from corresponding ana-
lytical solutions are used as a reference. In all cases, the density of voxel grids used
in the EAA was the same and equal to ∆x = ∆y = 1 mm. The NRMSE of the EAA is
reducing when the density of voxels in the hole is decreasing (more current dipoles in
the hole area are placed), e.g. for ∆x = ∆y = 0.25 mm, the NRMSE equals 1.22% and
1.62% for the circular and the elliptical hole, respectively.
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Fig. 4.46: Eddy current density distributions in a large thin conducting plate: (up) distortion and
"defect" currents, (down) superimposed currents

4.4.6. defect response signals for defects in anisotropic conductor

Further, a conductive plate with a single ideal defect is analyzed. The plate is moving
under the fixed permanent magnet with a constant velocity, sufficiently small that the
secondary field produced by induced eddy currents in the plate does not influence the
primary magnetic field produced by the PM. In that sense, the weak reaction approach
can be applied to calculate 3D DRS profiles. The EAA can be directly used in these
calculations if the plate is large and the electrical conductivity is anisotropic (σzz = 0).
Assuming that the top surface of the plate coincides with X0Y plane, the defect can be
modeled by one or more XY layers of voxel grids (Fig. 4.47). Having in mind that the
weak reaction approach is used, the EAA is applied to every voxel layer independently.
The sum of DRSs calculated for each layer gives at the end the total defect response
signal. To calculate DRS profile corresponding to one voxel layer, it is necessary to know
a current density distribution in the moving plate without defect. To calculate this
distributions, MD models of permanent magnets described in Section 4.3. are applied.

Before explaining how to calculate 3D DRS, generalized formulas for the magnetic
field produced by an arbitrary oriented magnetic dipole and for eddy currents induced
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in a slowly moving conducting plate are briefly presented. The formulas enable to
construct multi-dipole models (MDM) of complex PM arrangements such as Halbach
permanent magnets [55] consisting of more than one magnetic part magnetized in
various directions, e.g. cylindrical rods surrounded by segments or rings. The MDM
consists of ND magnetic dipoles located in a regular grid of voxels constructed as it
was already shown in Section 4.3.. The moment mi of the ith magnetic dipole from
the MDM can be determined using the PM magnetization vector M = M1M as mi =
MVM1M, where VM = V0/ND and V0 is the volume of the PM. The orientation of
mi coincides with the direction of the magnetization vector 1M. The magnetic flux
density bki = bi(xk, yk, zk) = [bx,i, by,i, bz,i]

T at the point rk = [xk, yk, zk]
T produced by

an arbitrary oriented magnetic dipole mi = [mx,i, my,i, mz,i]
T located at ri = [xi, yi, zi]

T

can be described in the Cartesian coordinate system according to (4.53) as:

bki =
µ0

4π



3
x2

ki
R5

ki
− 1

R3
ki

3
xkiyki

R5
ki

3
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R5
ki

3
xkiyki

R5
ki

3
y2

ki
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3
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3
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3
z2
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R5

ki
− 1

R3
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
·mT

i (4.134)

where

xki = xk − xi, yki = yk − yi, zki = zk − zi

R2
ki = r2

ki + z2
ki, r2

ki = x2
ki + y2

ki

In the WRA, induced eddy currents J in a conducting object can be directly cal-
culated using Ohm’s law for moving conductors (4.20) because the influence of the
secondary magnetic field produced by eddy currents on the primary field is neglected.
Equation (4.20) can be written as

J = σ0(E + v× B) = σ0(−∇φ + v× B) = −σ0


∂φ

∂x
∂φ

∂y
+ vBz

0

 (4.135)

where φ is the electric scalar potential fulfilling the Laplace equation ∇2φ = 0, and
∇ · J = 0. For 3D LET problem, it can be shown that for an arbitrary magnetic dipole
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located above the conducting plate moving along x-axis with constant velocity v =
v1x, induced eddy currents in the plate flow only in the planes parallel to the top
surface of the plate [132], i.e., Jz = 0. For a large plate, the electric scalar potential
φki = φi(xk, yk, zk) at any point rk = [xk, yk, zk]

T in the plate corresponding to mi can
be directly determined from the condition

Jz = 0→ ∂φki
∂z

= vby,i (4.136)

where by,i is the y-component of the magnetic flux density produced by the magnetic
dipole mi (see (4.134)). Finally, using the notation from [132], the eddy currents induced
in the plate can be described as

Jki =
µ0σ0v

4π

 C1g1 + C3g3 C1 f1 − C3 f3 C2g2

−3C1 f1 − C3 f3 −C1g1 − C3g3 C0 − C2 f2

0 0 0

 ·mT
i (4.137)

where

Jki = Ji(xk, yk, zk) = [Jx,i, Jy,i, Jz,i]
T

f1 =
xki
rki

, f2 =
x2

ki − y2
ki

r2
ki

, f3 =
xki(x2

ki − 3y2
ki)

r3
ki

(4.138)

g1 =
yki
rki

, g2 = 2
xkiyki

r2
ki

, g3 =
yki(3x2

ki − y2
ki)

r3
ki

(4.139)

and

C0 =
3r2

ki
2R5

ki
− 1

R3
ki

, C1 = sign(zki)
3rki|zki|

4R5
ki

, C2 = − 3r2
ki

2R5
ki

(4.140)

C3 = sign(zki)

[
|zki|
R3

ki

(
3rki

4R2
ki
+

1
rki

)
+

2
r3

ki

( |zki|
Rki
− 1
)]

(4.141)

It can be observed that terms C1 f1, C1g1, C3 f3, and C3g3 in (4.137) become singular
for rki = 0, i.e., for observation points rk lying just under the magnetic dipole mi. To
calculate eddy currents under the dipole, series expansions of C1 and C3 around rki = 0
have to be found

C1|r→0 = sign(zki)
3r

4|zki|4
(

1− 5r2

2|zki|2
)
+O(r4) (4.142)

C3|r→0 = −sign(zki)
15r3

8|zki|6
+O(r4) (4.143)

which gives at the end

Jki|r→0 =
µ0σ0v

4π


0 0 0

0 0 − 1
|zki|3

0 0 0

 ·mT
i (4.144)
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It should be noted that the formula (4.137) together with (4.144) is valid both for uni-
formly conductive plates and electrically anisotropic plates (σzz = 0).

Generally, 3D defect response signals are defined in the same way as in the case of
2D LET problems

∆F = F− F0 (4.145)

where F and F0 are forces exerted on the PM above moving conducting plate with and
without a defect, respectively. In the further analysis, it is assumed that the electric
conductivity of the moving plate is anisotropic with σzz = 0. If only one ideal defect
cx × cy × cz is located at the depth d in the large moving conducting plate W × L× D
then the 3D DRS profile for xn ∈< x1, x2 > (Fig. 4.48) can be calculated using the EAA
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Fig. 4.48: LET configuration setup used in calculations of 3D DRS profiles

and is expressed as follows:

∆F(n) = ∆F(rn) =

∞∫
−∞

∞∫
−∞

−d∫
−d−cz

(j(n)D + j(n)E )× B(n)dxdydz (4.146)

where rn = [xn, y0, h0]
T describes the relative position between the PM and the plate

coordinate systems, and J(n)E and J(n)D are distortion and "defect" current density vectors
at rn, respectively.

To calculate 3D DRS profile numerically, the extended region Ext × Ext × cz around
the defect cx × cy × cz is introduced. The size Ext of the extended region is defined as

Ext = (EXT + 1)max(cx, cy) (4.147)
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where EXT is an arbitrary chosen scaling factor greater or equal 0. If EXT = 0 then the
extended region does not exist and the model is reduced to the approach described in
[105].

The extended region is substituted with NL = cz/∆z XY-layers of regular grids of
voxels each of volume VE = ∆x × ∆y× ∆z (Fig. 4.49). Number of voxels outside and
inside a defect is constant for each XY-layer and assigned to NVE and NVD, respectively.
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Fig. 4.49: Extended region (EXT = 1) around a sample ideal elliptic-cylindrical defect

The 3D DRS formula (4.146) takes the following discrete form:

∆F(n) ∼= VE

NL

∑
l=1

[
NVD

∑
j=1

jl,(n)
D,j × Bl,(n)

j +
NVE

∑
i=1

jl,(n)
E,i × Bl,(n)

i

]
(4.148)

where jl,(n)
E,i , Bl,(n)

i are the distortion eddy current density and primary magnetic flux
density at the center of the ith voxel located at the lth layer outside the defect, re-
spectively. Vectors jl,(n)

D,j , Bl,(n)
j denote the "defect" eddy current density and primary

magnetic flux density at the center of the jth voxel in the lth layer inside the defect.
The primary magnetic flux density Bl,(n)

k in the lth layer at the point rk outside/inside
the defect is calculated using the MDM of the PM as

Bl,(n)
k =

ND

∑
i=1

bl,(n)
ki (4.149)

where ND is the number of magnetic dipoles in the MDM and bl,(n)
ki is given by (4.134)

in which rki = rk − r′i − rn and r′i is a local position of the ith magnetic dipole in the
MDM.
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The "defect" eddy current density jl,(n)
D,k at the point rk inside the defect is a super-

position of current density contributions Jl,(n)
ki (4.137) evoked by all magnetic dipoles

from the MDM:

jl,(n)
D,k =

ND

∑
i=1

Jl,(n)
ki (4.150)

Having "defect" eddy current densities jl,(n)
D,k , distortion eddy currents jl,(n)

E,k at rk in
the lth layer of the extended region outside the defect can be calculated as

jl,(n)
E,k = χDCF

VE
2π∆z

NVD

∑
i=1

2
jl,(n)
D,i · (rk − ri)

|rk − ri|4
(rk − ri)−

jl,(n)
D,i

|rk − ri|2

 (4.151)

where χDCF is the dipolar correction factor defined by (4.133).
The formula (4.148) together with (4.149) - (4.151) gives the complete way how to

calculate 3D DRS coming up when an anisotropic conducting plate with a defect moves
slowly under a fixed, arbitrary magnetized magnet system described by the MDM. The
implementation of the above approach can be directly realized as a script in Matlab®.
The script should be coded using vectorization features of Matlab® instead of classical
loops for the realization of sums in (4.148) - (4.151). This significantly accelerates the
code. However, even in the case of optimized code, its execution time strongly depends
on the number of magnetic dipoles used in the MDM and thus it could be relatively
time consuming for a very accurate MDM with the high number of ND. Therefore, the
possibility of eliminating MDM from DRS calculations has to be analyzed.

First, the MDM can be eliminated from (4.149) which describes the primary mag-
netic field produced by the permanent magnet by applying directly the analytical ex-
pressions presented in Section 4.3.5., i.e., (4.63) - (4.65) or (4.69) - (4.70) for rectangular
or cylindrical permanent magnets, respectively.

The second possibility to accelerate the code is to use analytical expressions for B
and JD in (4.148). Unfortunately, it was not possible to find analytical formulas for
induced eddy currents in a moving conducting plate produced by a cylindrical per-
manent magnet. Therefore, only the analytical solution for a rectangular PM above a
moving plate is presented hereinafter.

The formulas (4.63) - (4.65) can be rewritten using expressions given in [42]. In this
case, the magnetic flux density B(x, y, z) at any point r = [x, y, z]T outside a rectangular
permanent magnet can be given as

B(x, y, z) =
µ0M
4π



2

∑
k=1

2

∑
n=1

(−1)k+n ln [Fnk(x, y, z)]

2

∑
k=1

2

∑
m=1

(−1)k+m ln [Hmk(x, y, z)]

2

∑
k=1

2

∑
m=1

2

∑
n=1

(−1)k+m+n arctan [Gnmk(x, y, z)]


(4.152)
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where

Fnk(x, y, z) =
Rn1k(x, y, z) + ∆y1

Rn2k(x, y, z) + ∆y2
(4.153)

Gnmk(x, y, z) =
∆xn∆ym

∆zkRnmk(x, y, z)
(4.154)

Hmk(x, y, z) =
R1mk(x, y, z) + ∆x1

R2mk(x, y, z) + ∆x2
(4.155)

and

Rnmk(x, y, z) =
√

∆x2
n + ∆y2

m + ∆z2
k , ∆xn = x− xn, ∆ym = y− ym, ∆zk = z− zk

The parameters x1, x2, y1, y2, and z1, z2 describe the PM as it is shown in Fig. 4.50.

x

y

z

Tr=[x,y,z]
M

COG

x1

z1

y1 y2

z2

x2

Fig. 4.50: Rectangular permanent magnet - setup for analytical calculations [42]

The electric scalar potential φ at any point r = [x, y, z]T in the moving plate can be
found using the WRA and (4.135) together with the condition (4.136) as

φ(x, y, z) =
µ0Mv

4π

2

∑
k=1

2

∑
m=1

2

∑
n=1

(−1)k+m+n
{

∆xn ln [Rnmk(x, y, z)− ∆zk]+

+ ∆ym arctan
∆xn∆zk

∆ymRnmk(x, y, z)
− ∆zk ln [Rnmk(x, y, z) + ∆xn]

}
(4.156)

The eddy current density J in the plate is calculated from:

J(x, y, z) = −σ0


∂φ

∂x
∂φ

∂y
+ vBz

0

 (4.157)
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where Bz is given by (4.152) and gradient components are as follows:

∂φ

∂x
=

µ0Mv
4π

2

∑
k=1

2

∑
m=1

{
(−1)k+m ln

R2mk(x, y, z)− ∆zk
R1mk(x, y, z)− ∆zk

+

+
2

∑
n=1

(−1)k+m+n

Rnmk(x, y, z)

[
∆y2

m∆zk
∆x2

n + ∆y2
m
+

∆x2
n

Rnmk(x, y, z)− ∆zk
− ∆zk

]}
(4.158)

∂φ

∂y
=

µ0Mv
4π

2

∑
k=1

2

∑
m=1

2

∑
n=1

(−1)k+m+n
{

arctan
∆xn∆zk

∆ymRnmk(x, y, z)
+

+
∆ym

Rnmk(x, y, z)

[
∆xn

Rnmk(x, y, z)− ∆zk
− ∆zk

Rnmk(x, y, z) + ∆xn
−

−∆xn∆zk
(
∆x2

n + 2∆y2
m + ∆z2

k
)

(∆x2
n + ∆y2

m)
(
∆y2

m + ∆z2
k
) ]} (4.159)

In the case where B and JD in (4.148) are expressed by (4.152) and (4.157), the approach
is called the analytical EAA.

In the next section, some results of 3D DRS calculations performed with the EAA for
various defects are presented.

4.4.7. simulations of 3d drs with extended area approach

Sample 3D defect response signals are calculated using the EAA for defects shown in
Fig. 4.51.

c =12mmx

c =2mmx

c =6mmx

c =6mmx

c =2mmy

c =12mmy

c =6mmy

D1

D2

D4

D3

Fig. 4.51: Sample defects used in simulations with the electrically anisotropic plate (cz = 2 mm)

All sample defects were located at a depth of d = 4 mm and possess the same size
cz = 2 mm. The size Ext of the extended region was estimated according to (4.147) with
the varying parameter EXT equals to 0(1)4. The density of a voxel grid replacing an
extended region was constant and equal to ∆x× ∆y× ∆z = 1 mm× 1 mm× 2 mm, i.e.,
there was only one voxel layer covering the defect. Two permanent magnets (1) cuboid:
w2 × h = 15 mm× 15 mm× 25 mm, and (2) cylinder: 2R× H = 15 mm× 25 mm fixed
at the lift-off h0 = 1 mm above the moving conducting plate of thickness D = 100 mm
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are analyzed. Both magnets are Nd-Fe-B (Neodymium-Iron-Boron) magnets of grade
N35 with the remanence (residual induction) Br equals 1.17 T. The grade of Nd-Fe-B
magnets corresponds to the maximum energy product BHmax expressed in CGS unit
MGOe (Mega Gauss Oersted).

The plate of the anisotropic electrical conductivity [σ] = diag(σ0, σ0, 0) with σ0 =
30.61 MS/m moves along the x-axis with the speed v = 1 cm/s. Defect response signals
were calculated according to (4.148) using the analytical EAA for the rectangular PM
(1) and the EAA with the optimal (α, β)-MDM consisting of 1365 magnetic dipoles for
the cylindrical PM (2). The 3D DRS profiles ∆F(rn) are calculated on a set of points
rn, regularly distributed along x-line defined as: y = y0 = 0, z = h0 = 1 mm, and
x = xn where xn ∈< −30 mm, 30 mm >. The x-density of the profile points is set to
δx = 1 mm. Since DRS profile points lie on the XZ-symmetry plane of the considered
defects the y-component of ∆F(n) is equal to 0 and the DRS profile is defined only by
x- and z-component corresponding to the drag and the lift force exerted on the PM.

To quantify errors of DRS calculations with EAA, a normalized root mean square
error (NRMSE) and a normalized maximum difference error (NMDE) are used. The
errors are defined as:

NRMSE =
√

ε2
x + ε2

z , NMDE =
√

ζ2
x + ζ2

z (4.160)

where

εc =

√
1
N ∑N

n=1

[
∆F(n)

c − ∆F(n)
c,FEM

]2

max
[
∆F(n)

c,FEM

]
−min

[
∆F(n)

c,FEM

]100% (4.161)

ζc =
∆Fmax

c

max
[
∆F(n)

c,FEM

]
−min

[
∆F(n)

c,FEM

]100% (4.162)

∆Fmax
c = max

n=1...N

∣∣∣∆F(n)
c − ∆F(n)

c,FEM

∣∣∣ (4.163)

while index c ∈ {x, z}, N is the number of test points in a DRS profile ∆F(n), and a
subscript FEM denotes a reference solution calculated by FEM.

Table 4.1 shows NRMSE and NMDE of DRS profiles calculated for defects D1-D4
in a conducting plate moving under the rectangular PM (1) using the analytical EAA
with various sizes of the extended region (see (4.147)).

It can be observed that regardless of the shape of the defect both NRMSE and
NMDE decrease when extended area increases. However, errors for the long defect
D1 are much higher than for the other test defects. Increasing the density of voxel
grids in the EAA does not improve DRS profiles in this case.

In order to reduce DRS errors for rectangular defects that are not squares, a modified
DCF estimated from the so-called "equivalent ellipse" of equal area to the original
rectangular defect is applied. The modified DCF χ∗DCF takes the form

χ∗DCF =
π

4
cx

cy
+ 1 (4.164)
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Table 4.1: Normalized errors of 3D DRS - anisotropic plate

CUBOIDa EXT

0 1 2 3 4

NRMSE [%]

D1 29.28 12.97 11.74 11.40 11.08

D2 24.76 4.62 3.42 3.42 3.62

D3 11.95 9.32 6.89 4.51 3.21

D4 12.18 9.40 7.29 5.00 4.00

NMDE [%]

D1 74.64 27.25 26.72 26.46 25.89

D2 63.55 7.95 5.67 6.22 6.86

D3 28.23 21.19 15.06 9.16 6.00

D4 28.04 20.98 15.20 9.66 7.99

a PM-N35-CUBOID: w2 × h = 15 mm× 15 mm× 25 mm, h0 = 1 mm, v0 = 1 cm/s,
defect depth d = 4 mm

Table 4.2 shows errors of DRS profiles for the defect D1 calculated with the modified
DCF which reach now comparable values to the errors for the other test defects.

Table 4.2: Defect D1: errors after "equivalent ellipse" correction

D1
EXT

1 2 3 4

NRMSE [%] 8.92 6.38 5.36 4.81

NMDE [%] 17.49 11.78 10.06 9.22

The DRS profiles ∆Fx and ∆Fz for defects D1-D4 calculated with the EAA are pre-
sented in Fig. 4.52. The profiles for defects D1 and D2 are obtained using the modified
DCF (4.164) while for defects D3 and D4 the standard DCF (4.133) is applied. For com-
parison, DRS profiles determined using only "defect" currents [105] are also plotted.
DRS profiles for all test defects calculated with the EAA are definitely better than the
profiles obtained using only "defect" currents (NRMSE is less than 5%).
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Fig. 4.52: DRS profiles for defects D1 - D4 (up - down) calculated for EXT = 0/4 (left/right)
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The computation time TANA of DRS profiles simulations performed using the analyt-
ical EAA are also compared with the computation time TMDM of DRS profiles obtained
using the EAA with α-MDM for the corresponding rectangular PM. The α-MDM con-
sists of 1331 magnetic dipoles with the optimal α equals 0.485071 which provides mod-
eling of the magnetic flux density in the conducting plate of average error NRMSE less
than 0.15%. Computations of DRS profiles with the analytical EAA are over 30 times
faster than calculations using the EAA with α-MDM, independently on the size of the
applied extended region, e.g. for profiles consisting of 61 points and the extended re-
gion defined by EXT = 4, TANA found as average time of calculations performed for
all test dipoles equals 2.54 s while the average TMDM is equal to 95.1 s.

Additionally, induced eddy currents near analyzed test defects are calculated to illus-
trate the quality of the EAA. Figure 4.53 shows distributions of induced eddy currents
flowing around defects D1-D4 at the moment when the PM is just above the center of
the corresponding defect. The distributions are calculated with the analytical EAA at
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Fig. 4.53: Current density distributions around defects D1-D4 calculated with the EAA for
EXT = 4 (PM is located above the defect center)

the XY-plane which is the mid-plane of the defect (z = −5 mm). Due to the symmetry
of the problem, distributions are plotted only for y > 0. Cones represent the resultant
eddy current density in centers of corresponding voxels used in the EAA. The resultant
eddy currents are superposition of the currents in the moving plate without defect, the
"defect" currents, and the currents in the extended region. It can be noticed that the
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calculated current distributions are close to these which are expected (see for example
Fig. 4.41).

Finally, the results of simulations performed with the cylindrical PM (2) located
above the moving conducting plate are summarized in Table 4.3.

Table 4.3: Normalized errors of 3D DRS - anisotropic plate

CYLINDERa EXT

0 1 2 3 4

NRMSE [%]

D1 28.45 8.28 6.08 5.27 4.82

D2 22.19 4.94 4.57 4.64 4.79

D3 11.73 8.64 6.04 3.82 2.68

D4 11.93 8.60 6.28 4.16 3.31

NMDE [%]

D1 74.57 16.80 12.02 10.50 9.68

D2 59.14 8.84 8.50 9.57 10.13

D3 28.00 19.99 13.40 7.70 4.89

D4 28.31 19.72 13.40 8.24 6.73

a PM-N35-CYLINDER: 2R × H = 15 mm × 25 mm, h0 = 1 mm, v0 = 1 cm/s,
defect depth d = 4 mm

In this case, the PM is modeled by (α, β)-MDM consisting of 1365 magnetic dipoles,
and the optimal (α, β) parameters equal (0.508238, 0.488512) which results in an ap-
proximation of magnetic flux density in the plate with the average NRMSE below
0.065%. Similarly, as in the case of the rectangular PM,the DRS profiles for defects D1
and D2 are obtained using the modified DCF in the EAA while for defects D3 and D4
the standard DCF is applied. The calculated NRMSE and NMDE errors for all test
defects are similar as for the rectangular PM, i.e., less than 5% and 10%, respectively.

4.4.8. defect response signals for defects in solid conductors

So far, 3D DRS have been calculated for defects located in a moving large conducting
plate described by an anisotropic electrical conductivity [σ]. The application of the
EAA can be easily expanded on problems where a solid conducting plate is described
by a homogeneous electrical conductivity σ0. In this case, calculations of induced eddy
currents in the moving conducting plate without defect can be performed in the same
way as it is described in Section 4.4.6. because the distribution of eddy currents in the
plate does not depend on the fact if the electrical conductivity is isotropic or anisotropic,
i.e., in both cases, J0,z = 0. Although "defect" eddy currents j(n)D,k remain the same as
in the anisotropic case, the distortion currents in the extended region flow not only in
the XY-planes but around the entire defect. This means that the extended region has
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to be defined as a 3D surroundings of a defect and for distortion currents j(n)E,k ,instead
of (4.151), the following formula has to be used

j(n)E,k = χDCF
VE
4π

NVD

∑
i=1

3
j(n)D,i · (rk − ri)

|rk − ri|5
(rk − ri)−

j(n)D,i

|rk − ri|3

 (4.165)

where χDCF is a dipolar correction factor. It can be shown that χDCF = 3/2 for spherical
defects [95].

However, distortion currents calculated with (4.165) do not meet the boundary con-
dition 1z · jE = 0 at the top surface of the plate (z = 0) where the jump of conductivity
is observed. If the thickness of the conducting plate D can be assumed to be much
greater than the depth and the maximum size of the defect, then the above boundary
condition can be fulfilled by mirroring the "defect" currents j(n)D,k against the plane z = 0

(Fig. 4.54) and then taking into account the "mirrored" currents j(n)M,k in the distortion
calculations.
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Fig. 4.54: The solid isotropic conducting plate with mirrored "defect" currents

Finally, the eddy currents at any point rk in the extended region can be obtained as

j(n)E,k = χDCF
VE
4π

NVD

∑
i=1

3
j(n)D,i · (rk − ri)

|rk − ri|5
(rk − ri)−

j(n)D,i

|rk − ri|3

+

+
NVD

∑
i=1

3
j(n)M,i · (rk − rM,i)

|rk − rM,i|5
(rk − rM,i)−

j(n)M,i

|rk − rM,i|3

 (4.166)

where rM,i is the position of the ith mirrored current dipole and j(n)M,k = j(n)D,k.
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DRS profiles can be calculated using (4.148) with (4.166) instead of (4.151). To test
the quality of DRS profiles calculated for defects in a solid conducting plate of homo-
geneous electrical conductivity σ0 = 30.61[MS/m] test defects shown in Fig. 4.55 are
analyzed. Test defects are defined by a combination of parameters cx × cy × cz as fol-
lows: D1 (sphere) is described by its diameter (cx × 0× 0), D2 (cylinder) is described
by the diameter and height (cx × 0× cz), and D3 (cuboid) is given by the length, width,
and height (cx × cy × cz). Parameters ci for all defects shown in Fig.4.55 are equal to
6 mm while the depth d of defects equals 4 mm. The density of the voxel grid used in
the EAA is defined as ∆x× ∆y× ∆z = 1 mm× 1 mm× 1 mm.
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Fig. 4.55: Sample test defects simulated in the electrically isotropic conducting plate

In the LET system, the rectangular PM made of N35 material (remanence Br = 1.17 T)
is applied. The PM of width 15 mm and height 25 mm is located at the lift-off h0 =
1 mm. The conducting plate W × L× D = 400 mm× 400 mm× 100 mm (important for
FEM calculations) moves along the x-axis with the velocity v = 1 cm/s.

Table 4.4 shows normalized errors (NRMSE and NMDE defined by (4.160)) of
DRS profiles for defects D1-D3 calculated along x-line: y = 0, and z = h0, where
x ∈< −30 mm, 30 mm >. The analytical EAA with χDCF = 3/2 is applied using se-
quentially increasing extended regions (EXT = 0 : 1 : 5). As for the anisotropic case,

Table 4.4: Normalized errors of 3D DRS for defects in a solid plate

CUBOIDa EXT

0 1 2 3 4 5

NRMSE [%]

D1 17.04 11.08 8.31 5.36 3.82 2.88

D2 16.10 11.52 8.95 6.00 4.40 3.29

D3 15.54 11.24 8.36 5.49 4.07 3.26

NMDE [%]

D1 37.77 24.84 17.83 11.19 7.95 6.02

D2 35.08 25.59 18.91 12.27 9.02 7.00

D3 33.90 25.31 18.14 11.66 8.55 6.84

a PM-N35-CUBOID: w2 × h = 15 mm × 15 mm × 25 mm, h0 = 1 mm, v0 = 1 cm/s,
defect depth d = 4 mm
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if the extended region increases the reduction of errors can similarly be observed, i.e.,
NRMSE and NMDE are reduced below 3.5% and 7%, respectively.

Figures 4.56 - 4.57shows DRS profiles of all test defects calculated for EXT = 0
(no extended region) and EXT = 5, for comparison. It can be observed a very good
agreement between the EAA (EXT = 5) and the reference FEM solutions. Additionally,
distributions of eddy currents flowing around defects are plotted in Fig. 4.58.

In all test simulations, the same dipolar correction factor χDCF = 3/2 determined
from the analysis of a spherical cavity in a homogeneous current field is used. As it
can be seen, this DCF works correctly also for other test defect shapes (cylinder, cube)
because due to chosen defect dimensions they are quite close to a spherical defect.
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Fig. 4.56: DRS profiles of defects D1-D2 in the solid plate calculated for EXT = 0/5 (left/right)
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Fig. 4.57: DRS profiles of defect D3 in the solid plate calculated for EXT = 0/5 (left/right)

Fig. 4.58: Current density around defects D1-D3 on the defect symmetry plane for y > 0 calcu-
lated in the solid plate for EXT = 5 (the PM is above the center of defects)
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To find the DCF for an arbitrary defect defined by the outline cx × cy × cz distortion
currents around the idealized cavity in a form of oblate/prolate spheroid have to be an-
alyzed [95]. The cavity is located in a conductor in which homogeneous flow of electric
current is forced. The distribution of distortion currents can be found analytically using
a separation of variables method in the appropriate coordinate system (oblate/prolate
spheroidal CS) [74]. The local dipolar correction factors for defects of various shapes
along the 0Y line are shown in Fig 4.59.

PS: 3× 6× 3
PS: 3× 3× 6
OS: 6× 6× 3
OS: 6× 3× 6
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χ
D
C
F

d [mm]

0 1.5 3 4.5 6 7.5

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Fig. 4.59: Local dipolar correction factors for spheroidal cavities: (OS) oblate spheroid, (PS) pro-
late spheroid

The analysis of the presented results allows to find the following approximate for-
mula for the dipolar correction factor in the EAA:

χDCF = 1 +
1
4

(
cx

cy
+

cz

cy

)
(4.167)

Table 4.5 presents normalized root mean square errors of 3D DRS profiles calculated
for rectangular test defects defined by cx × cy × cz using constant χDCF = 3/2 and
χDCF estimated from (4.167). It can be noted that the application of (4.167) reduces
DRS errors by about 30% for all test defects.

Figure 4.60 presents DRS profiles for defects from the Table 4.5. A very good con-
formity can be observed between profiles received with the analytical EAA and the
reference DRS calculated by FEM. However, it must be noted that the NRMSE of ∆Fz
profiles is always higher than the error of x-DRS component.



Table 4.5: Various rectangular defects in a solid plate - normalized errors

Defecta
χDCF NRMSE[%] χDCF (4.167) NRMSE[%]

cx × cy × cz

3× 6× 3 1.5 4.85 1.250 2.47

6× 3× 3 1.5 3.81 1.750 2.69

6× 3× 6 1.5 5.62 2.000 3.42

6× 6× 3 1.5 2.92 1.375 2.61

a PM-N35-CUBOID: w× w× h = 15 mm× 15 mm× 25 mm, h0 = 1 mm, v0 = 1 cm/s, defect
depth d = 4 mm
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Fig. 4.60: DRS profiles of various rectangular defects in the solid plate calculated for EXT = 5
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Finally, for the rectangular PM, comparing CPU times of the analytical EAA and
the EAA where the α-MDM with 1331 magnetic dipoles is applied, it can be found
that the analytical method is almost 40 faster than the MDM one. This comparison
is independent on the applied extended region size and the used voxel grid density.
For example, for the extended region EXT = 5 and the voxel grid density equals
1 mm× 1 mm× 1 mm, the average CPU time of finding 61 point defect response profiles
is equal to 15.9 s and 632.1 s for the analytical and the MDM EAA implementation,
respectively.

4.4.9. résumé

In Section 4.4., the drag and lift forces exerted on a rectangular/cylindrical PM above
a large conducting plate moving with a constant velocity along the x-axis have been
calculated using modification of the approach presented in [114]. Formulas for induced
stationary eddy currents in the moving plate are also obtained. It has also been shown
how to calculate defect response signals (DRS) of one defect located in a large conduct-
ing plate slowly moving under a permanent magnet. Using the weak reaction approach
(WRA) and the new developed extended area approach (EAA) it was possible to find
the DRS of the defect cx× cy× cz for large plates of any thickness D and the anisotropic
electrical conductivity [σ], where σzz = 0 as well as for thick solid plates of homoge-
neous electrical conductivity σ0. The introduced methods are illustrated by numerical
simulations in which 3D DRS and induced eddy currents near a single defect are calcu-
lated. Simulations show that the proposed methods allow calculation of 3D DRS with
the NRMSE below 5% for all analyzed test defects.

4.5. summary

In this chapter Lorentz force eddy current testing (LET) method for systems where the
source of magnetic field and the investigated conducting object are in relative move-
ment has been presented. The purpose of this chapter was to present in details the use
of analytical and semi-analytical methods for the calculation of 2D and 3D models of
LET. Numerical Methods (FEM) and analysis of the problems of defects identification
(inverse problems) have been deliberately omitted because they have been described
elsewhere. At the beginning, two coordinate systems connected with the reference and
the moving frame together with the corresponding magnetic field descriptions have
been defined. Next, analytical methods of calculation of Lorentz forces for 2D LET
models without and with defects have been described (starting from the dipole model
and ending with a rectangular model of permanent magnet). Then, the dipole models
of cylindrical and cuboidal 3D permanent magnets have been presented and discussed.
The corresponding analytical formulas for the analyzed magnets enabling a calcula-
tion of the magnetic field at any point around the magnets were also included. Further,
analytical approach to the calculation of the Lorentz forces acting on the 3D model of
the permanent magnet (cylinder/cuboid) moving with a constant velocity above the
conductive infinitely broad plate of given thickness has been described. Formula de-
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scribing eddy currents induced in the conductive plate were also given. At the end, the
semi-analytical method using an extended area approach for calculation of 3D response
Lorentz force signals of defects located in anisotropic or solid conducting plates has
been introduced. Discussion and results of simulations for various defects have also
been included.

At the end of the summary, a list of associated publications (sorted by date) pub-
lished by the team working together in the field of LET is presented: [17] LET idea,
[153] 2D FEM simulations with moving source function, [18] 2D/3D simulations, [154]
fast computation technique (FEM), [126] measurements, validation of numerical results,
[140] FEM, 2D study, [139] modeling with logical expressions (FEM), [127] Lorentz
force sigmometry, [145] Lorentz force sigmometry, [105] defects reconstruction, aniso-
tropic block, [141] moving defect and moving magnet approaches, logical expressions
(FEM), [9] drag force on a magnetic dipole, translating and rotating conducting cylin-
der, [143] defect depth and magnet lift-off studies, [142] weak reaction approach (FEM),
[16] LET overview, [24] LET vs eddy current testing (ECT), [23] measurement, LET vs
ECT, velocity and defect depth studies, [92] forward modeling with various perma-
nent magnet models, [110] ECT probes, reverse engineering, [93] permanent magnet
modeling.

So far, three doctoral dissertations were presented: [124] LET metrological implemen-
tation and verification, [138] LET numerical modeling, [104] Lorentz force evaluation,
and the next three are in preparation.

Two patents directly related to the LET are also notified: [146] sigmometry, electrical
conductivity measurements, and [144] differential sensor, inspection system.



5
P O S T P R O C E S S I N G - 3 D V I S U A L I Z AT I O N O F F I E L D S A N D
O B J E C T S

5.1. introduction

Postprocessing is an important part of any numerical and analytical simulation. From
one side, widely understanding, the term postprocessing in electromagnetic field anal-
ysis incorporates calculations of secondary parameters such as forces, inductances, ca-
pacitances, power losses, etc. based on potentials/fields quantities found in a simula-
tion process. On the other hand, the primary goal of postprocessing is to convert the re-
sulting large amounts of simulated data in an understandable form of presentation, e.g.
in graphics and animations. This goal can be achieved using internal features of simula-
tion programs (usually commercial), e.g. ANSYS Maxwell [4], COMSOL Multiphysics [26],
JMAG [64], MagNet [87], Opera [102], etc., or with a separate program (commercial/free,
e.g. Geomview [45], GiD [46], GMV [47], Gpr [50], ParaView [103], Xd3d [136], etc.) that has
special functions and methods which enable visualization and interpretation of simu-
lation results. Although the availability of postprocessing programs is relatively broad,
they do not always fulfill the specific requirements of the user, such as, for example,
import data in various formats, the implementation of specific functions to interpret
the data, functioning on different platforms of operating systems, etc. This is the main
reason why the program vv written by the author is introduced in this chapter. At the
beginning, the main area of application of the program vv were biomagnetics problems
[60, 159–163]. However, the range of applications of the vv program is not limited to
the biomagnetic problems only but it can easily be extended on other areas of electro-
magnetic field analysis, see, eg. Chapters 2 - 4 where the majority of 3D figures are
created with the vv-program.

5.2. description of vv program

The vv is a console visualization program which enables to visualize in a graphic
window various 3D objects like boundary/finite element meshes, sensors/electrodes
structures together with scalar/vector fields. It is written in a standard C language and
uses OpenGL [101] as a graphic library. In that sense, the vv is a system independent
program because it can be compiled under MS-Windows as well as under Unix/Linux
systems. The calling command of the vv-program has the following format:

173
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vv [-option1 [-option2 ...]] file1 [file2 ... ]

where file1 ... fileN denote input files with a description of objects which should
be visualized and option1 ... optionN are optional controlling parameters from the
following list:

[-e] do not show electrodes
[-G] global scaling of dipoles
[-h] print usage info
[-m<int>] display FE mesh with material code <int>
[-M] maximum mode for dipoles versus time
[-n] print no name in saved window
[-T<value>] set threshold for displayed dipoles in [%]
[-w<dim>] window size in pixels

Under MS-Windows, the user can use a helpful graphical user interface vvgui which
makes it easy to use the program vv. Figure 5.1 shows the snapshot of vvgui main
interface window.

Fig. 5.1: Main window of vvgui- program

The vvgui enables to choose visualized files from any folder (ADD button) using the
standard MS-Windows file selector. Because the files describing visualized objects can
be located in different folders, using vvgui significantly simplifies completing visual-
ized objects. The vvgui enables also to set some of vv starting options.

Most of the operations on the objects displayed in the graphical window of the
vv-program is carried out with the mouse. Pressing and holding the left button and
then moving the mouse enables rotation of objects. Pressing additionally ’Shift’ key
allows the user to control zooming of displayed objects. Clicking the right button opens
a small menu window where the user can control the behavior of visualized objects,
e.g. making some of them inactive, set transparency, show edges of visualized meshes,
etc. (Fig. 5.2).

Clicking the middle button (or the roller) enables to select elements in meshes used
by the boundary element method (BEM). The element selection is necessary for some



5.2. description of vv program 175

Fig. 5.2: Menu window used for changing execution parameters of the vv- program (activated
by pressing the right mouse button)

vv operations, e.g. switching edges between selected elements or local refinement of
meshes around chosen element. The selected element is marked with red color. Addi-
tionally, the full description of the selected element is printed at the vv console.

All other functions and features of vv are started by clicking a proper key on the
keyboard. This activates, when necessary, a dialog on the vv console where some addi-
tional parameters can be defined. The complete list of available keys is shown below:

--------------------------------------------------------------------
GENERAL OPERATIONS:
--------------------------------------------------------------------
Home - Reset actual position and zoom to start values
Arrows - Rotates objects 90Â° around main coordinate axes
PgUp - Zoom objects +10%
PgDn - Zoom objects -10%
Alt+b - Show viewing BOX
Alt+e - Show edges on backsides of objects ON/OFF
Alt+g - Global scale of field ON/OFF
Alt+l - Switch between local and global coordinate system
Alt+s - Store actual view parameters of scene
Alt+u - Use stored view parameters of scene
h - Print help ...
I - Switch ON/OFF spinning
N - START/END record animation in files vv_xxx.png
O - Set rotation angle
p - Print active window in file (.png)
q - QUIT/EXIT vv
r - ROTATE active files around active axis
S - SMOOTH mode ON/OFF (Phong shading ON/OFF)
s - SCALE active files
T - TRANSPARENCY ON/OFF
t - TRANSLATE active files
x - Set OX as active axis
y - Set OY as active axis
z - Set OZ as active axis
--------------------------------------------------------------------
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--------------------------------------------------------------------
GEO-MESHES:
--------------------------------------------------------------------
6 - Change color of active GEO files
C - Define cut-planes
c - CUT-PLANES ON/OFF
d - Switch diagonals in neighbor elements
E - EDGES ON/OFF
F - Refine locally BE-mesh (use object curvature)
f - Refine locally BE-mesh (flat)
g - Define list of elements (geo)
L - Display list of elements ON/OFF
l - Reconnect elements using Lindholm test
m - Show elements with bad quality
n - Recalculate normals
o - Compare GEO with ideal sphere
R - Reduce number of BE-mesh nodes
--------------------------------------------------------------------
MRI-FILES:
--------------------------------------------------------------------
> - Next slice (MRI)
< - Previous slice (MRI)
a - Give actual slice positions (MRI)
--------------------------------------------------------------------
DIP/CDR-FILES (VECTOR FIELDS):
--------------------------------------------------------------------
Alt+a - Change color of arrows/cones
+ - Next time step
- - Previous time step
A - Ellipsoid axes ON/OFF
B - Equivalent ellipsoids ON/OFF
b - Show equivalent ellipsoids vector ON/OFF
D - Generate test distributions for EqE and Dali procedures
e - Calculate equivalent ellipsoids
H - Define inside factor of equivalent ellipsoid
i - Calculate focus region (Dali object)
k - Calculate statistics of CDR
U - Generate set of current dipoles (moving, radial/tangential)
u - Generate current dipole tangential to the surface
X - Calculate difference between axes of EQEs
--------------------------------------------------------------------
POT/FLX-FILES (SCALAR FIELDS):
--------------------------------------------------------------------
+ - Next time step
- - Previous time step
3 - Set new color palette (pot/flx)
j - Set step for iso-lines (pot/flx)
K - Subtract offset in scalar field (pot/flx)
v - Change color scale ON/OFF (pot/flx)
--------------------------------------------------------------------
EXPORT FUNCTIONS:
--------------------------------------------------------------------
5 - Export data in STL-format (stereolithography, ASCII)
W - Export active files in VRML-format
w - Export active files in ASCII-format
--------------------------------------------------------------------

Details of listed above available functions will be given in next sections.
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5.3. visualization of 3d objects

The vv program can visualize various 3D objects, namely: surfaces defined as BEM
meshes, volumes described by FEM meshes, isometric binary data received from a
magnetic resonance imaging (MRI), and sets of sensors used in bioelectromagnetic
measurements (sets of electrodes, magnetometers, gradiometers).

The format of visualized data is identified based on extensions used in data file-
names. The following formats are recognized by vv:

.GEO - 3D surface (ASA format)

.BND - 3D surface (ASA format)

.PNT - set of 3D points (ASA format)

.NPT - set of 3D points (ASA format)

.BDx - 3D surface (Curry format)

.Sxx - 3D surface (Curry format)

.OFF - 3D objects (Object Oriented File Format) (Geomview)

.GTS - 3D surface (GNU Triangulated Surface Library format)

.NODE - volume - 3D FEM mesh (TETGEN format)

.ME3 - volume - 3D FEM mesh (FEM3D format)

.M3D - volume - 3D FEM mesh (FEM3D format)

.GRD - magnetic sensors - gradiometers (ASA format)

.RS3 - sensor geometry file (Curry format)

.ELC - electric sensors (ASA format)

.MRI - magnetic resonance isometric binary data (ASA format)

where x denotes any digit.
ASA™[5] is a highly flexible EEG/ERP/ECG (ElectroEncephaloGraphy/ Event Re-

lated Potentials/ ElectroCardioGraphy) and MEG/MCG (MagnetoEncephaloGraphy/
MagnetoCardioGraphy) analysis package with a variety of source reconstruction, sig-
nal analysis and MRI processing features.

The Curry software [30] is the most advanced and comprehensive tool for multi-
modal neuroimaging. Curry combines functional data such as EEG and MEG with
structural data from MRI and CT (Computer Tomography) to optimize source recon-
struction.
Geomview [45] is an interactive 3D viewing program for Unix using OOGL (Object

Oriented Graphics Library) file formats for description of 3D objects.
TetGen [122] is a program which generates good quality and adaptive tetrahedral

meshes of any 3D polyhedral domains suitable for finite element or finite volume
methods.
FEM3D is a finite element program for calculation of some 3D electrodynamic prob-

lems based on [51].
GNU stands for GNU’s Not Unix and describes the complete Unix -like software system

[48]. It differs from Unix by being free (not commercial) software and containing no
Unix code.

Figure 5.3 shows sample one compartment BEM models of brain and torso with
activated SMOOTH option (Phong shading with interpolated surface normals, [119]) and
Show EDGES option switched off (brain model) and on (torso model).
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(a) Brain model (grey matter) (b) Torso model

Fig. 5.3: Sample BEM meshes with activated SMOOTH option. Option Show EDGES is switched on
for torso model

The vv program can also visualize complex compartment models. In Fig. 5.4, the com-
plex multi-compartment BEM model of torso consisting of thorax, lungs, heart, and
ventricles is shown. The BEM model is created from MRI scans. Figure 5.4a presents
objects when the TRANSPARENCY option is on while Fig. 5.4b shows the same objects
with CUT PLANES option applied. The user can define up to 6 cut planes perpendicular

(a) TRANSPARENCY option is on (b) XY-cut plane, z = 30 mm

Fig. 5.4: Multi compartment BE-model of torso created from MRI scans (T - thorax, LL/LR - lung
left/right, H - heart, VL/VR - ventricle left/right)
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to the main coordinate axes. The other possibility of viewing complex compartment
models is so called "onion" approach where the user deactivates some objects (Fig. 5.5).

Fig. 5.5: Multi compartment BEM model - "onion" approach

The vv program enables to perform some operations on 3D surface triangular meshes,
i.e., a simple reduction of global mesh nodes and local mesh refinements. For creation
new BEM meshes (reduced/refined), the vv uses a simple triangle quality criterion [86]
to find connections between mesh elements. Considering a triangle ABC with edges
of length a, b, c and the semi-perimeter s = (a + b + c)/2, the quality q of the triangle
ABC is defined as:

q = 8
(s− a)(s− b)(s− c)

abc
(5.1)

The maximum of q equals 1 and corresponds to an equilateral triangle.
For a pair of triangles sharing a common edge, the optimal connection of triangles

[86] can be defined as a connection with the maximum of a joint quality factor q12
given as:

q12 = 2
q1q2

q1 + q2
(5.2)

where q1 and q2 are the individual quality factors of analyzed triangles.
Figure 5.6 shows sample reduction of BE mesh of torso model performed by vv

which removes some nodes and elements from the original mesh and creates a new
reduced BE mesh. The reduced model consists of NE = 1950 triangular elements which
is almost twice less than the number of elements of the original mesh.

However, it must be noted that the average quality Qa of the reduced mesh is worse
than the average quality of the original mesh. Before the reduction process can be
started, the user has to choose the compartment which should be reduced. This can be
done by clicking the middle mouse button/roller over the object to select. The selection
is marked by changing the actual color of the closest element to red color (Fig. 5.6a).

Sometimes, the user would like to perform calculations with higher accuracy in a
certain region. In this case, it becomes helpful to perform a local refinement of the
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(a) Original mesh: NE = 3654, Qa = 92.7% (b) Reduced mesh: NE = 1950, Qa = 76.5%

Fig. 5.6: Sample reduction of BE-mesh for thorax model

boundary element mesh. The vv program offers two BE-mesh refinement procedures:
a simple one (key: ’f’), in which positions of additional nodes are calculated as average
positions of nodes belonging to the corresponding elements and more advanced one
(key: ’F’), where the curvature of the object is taken into account for the estimation of
new nodes.

As for the mesh reduction function, at the beginning, the user has to select a com-
partment for which the refinement should be carried out. The selection is realized by
pressing the middle button of the mouse. Using the actual mouse cursor position, the
closest element of the BE-mesh and the compartment are selected. The active selection
is shown by changing the color of the selected element to red. The selected mesh ele-
ment is treated as a center of the refinement region. The refinement procedure refines
all elements from the selected compartment located in the sphere of radius R. The user
defines the radius of the refinement sphere at the vv console. The modified BE-mesh
can be saved using vv-export keys: ’w’, ’W’, and ’5’, which enable to export active
objects, i.e., the objects which are actually present in the vv-view window, in ASCII,
VMRL, or STL format, respectively. The VMRL format (Virtual Reality Meta Language) is a
standard file format for representing 3D interactive vector graphics, designed specially
for using in the World Wide Web (WWW) environment. The STL format (STereoLithog-
raphy) is a file format native to the stereolithography software which is supported by
many CAD software packages.

Figure 5.7 presents sample results of local advanced refinement for brain and torso
models. The refinement procedure has been used twice for both models with corre-
sponding refinement radii equal 50 mm and 25 mm for the brain model and 100 mm
and 50 mm for the torso model, respectively. In both cases, the average mesh quality
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(a) Brain model (b) Torso model

Fig. 5.7: Sample refinements of BE-meshes

remains almost unchanged, i.e., Qa|before/after = 87.4%/86.8% and 92.6%/92.6% for the
brain and the torso model, respectively.

Figure 5.8a shows MRI scans of a physical thorax phantom visualized on 3 mutu-
ally perpendicular planes [15]. The vv program enables to visualize MRI isometric

(a) MRI scans (b) MRI scans combined with BE-model

Fig. 5.8: Visualization of MRI scans of artificial thorax model
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data stored in a binary file containing one byte per voxel of optional items (file ex-
tension: .mri - raw ASA format). Positions of planes along active axis (chosen by key:
’x’/’y’/’z’) can be controlled by keys ’>’/’<’. Figure 5.8b presents the same MRI
scans combined with the BEM model of thorax. The BEM model is displayed using 2
clipping planes (key: ’C’) defined by the plane normal vector and the distance to the
center of the system:

• Plane 1: n = [0, 0, 1], zd = −100 mm,

• Plane 2: n = [1, 0, 0], xd = −100 mm.

The vv program can also visualize various systems of magnetic sensors (file exten-
sions: .rs3/ .grd - Curry/ASA format) and electrodes (file extension: .elc). Electrodes
are presented in a form of small grey balls while magnetic sensors (magnetometers/-
gradiometers) are drawn as simplified coil configurations (e.g. thin solid disks, rect-
angular thin coils, etc.). Figure 5.9 presents the Neuromag-122 system and the config-
uration of magnetic sensors around sample BEM model of a test person head. The
Neuromag-122 MEG system was built by the company Neuromag Ltd., Helsinki (Fin-
land) in 1989 (Fig. 5.9a). It was the first developed whole head MEG device (helmet
system) [3]. It consists of 122 planar off-diagonal first-order gradiometers located at 61
measurement points with the average separation of 4 cm [56] (Fig. 5.9b).

(a) Neuromag-122 (b) 122 Planar gradiometers

Fig. 5.9: Neuromag-122 whole head MEG system (helmet shaped) [3]

Figure 5.10 shows the Philips (the Netherlands) twin dewar (a large thermos-like
container) biomagnetometer system with 2× 31 symmetrical first order axial gradiome-
ters [34] for operation inside a shielded room [3]. The system can be used for the
MEG/MCG recording. Additionally, up to 62 channels of EEG/ECG signals can be
recorded.
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(a) Twin dewar system (b) 2× 31 axial gradiometers

Fig. 5.10: Philips twin dewar biomagnetometer system (MCG/ECG session) [3]

5.4. visualization of scalar and vector fields

There are two ways to visualize scalar fields distributions in vv. In both ways, a pair of
files must be read, one file with the field values and the second one with the description
of sensors. In the first way, scalar field values (e.g. the electric potential) are given in the
file with the extension [.pot] while sensors (electrodes) are defined in the file with the
extension [.elc]. In the second way, field values (e.g., the magnetic flux density com-
ponent/magnitude) are given in the file with the extension [.flx] and sensors have
to be defined in the file with the extension [.grd]. In addition to the positions of the
sensors, the sensors file must also contain a grid of links between them. In both ways,
the file with field values can contain data for one or more time steps. Introduction of
two ways to describe scalar fields in the visualization procedure is due to the specificity
of biomagnetic applications where there is a need to distinguish electric from magnetic
sensor configurations. Figure 5.11 shows sample instantaneous distributions of the elec-
tric potential V and the magnetic flux density B recorded during EEG/MEG session
together with the BEM model of the subject’s head. The electric potential has been
registered using 32 electrodes mounted on the subject’s scalp. The magnetic flux den-
sity has been measured using only one dewar of the Philips system with 31 magnetic
channels. The presented distributions correspond to the moment when the electric po-
tential reaches maximum. The user can choose the moment of the displayed field by
pressing key ’+’/’-’ which increases/decreases the actual time about one time step.
The maximum/minimum values of actually visualized fields are printed in the console
window. The distance between isolines in field plots can be modified using key ’j’.
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Fig. 5.11: Instantaneous electric potential V and magnetic flux density B (one dewar
of the Philips system) recorded during EEG/MEG session. Min/max values of V/B:
[−3.74, 4.53]µV/[−311.8, 258.4]fT. Distance between contour lines: ∆V = 0.5 µV, ∆B = 50 fT

Because files with field values and sensors are simple ASCII files with self-explaining
keywords, both ways of scalar field visualization can easily be adapted to other appli-
cations, see eg. Chapter 3 or 4.

Figure 5.12 presents a cylindrical cell leading direct current (DC) with two oscillating
conducting fluids for the moment when the interface between fluids described by the
mode η13 reaches the maximum elevation. Contour plot of the interface elevation is
created using data stored in a pair of files with [.pot]- and [.elc]- extensions.
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Fig. 5.12: Cylindrical cell with two oscillating conducting fluids - interface mode η13. Interface
elevation (left) and current density near interface projected on X0Y-plane (right)

Figure 5.13 shows distributions of radial and axial magnetic flux density components
around the above cylindrical cell leading DC current for the maximum elevation of the
interface. In this case both approaches are used. The field on the cylindrical surface is
plotted using [.pot] + [.elc] files while the field on the evolved surface (plane) is
displayed using [.flx] + [.grd] files.

Fig. 5.13: Distribution of radial and axial magnetic flux density components around cylindrical
conducting cell for the maximum elevation of the interface (mode η13)

Discrete vector fields (eg., current density field, magnetic flux density distribution,
etc.) defined on a set of spatial points can be visualized in the vv with the help of 3D
arrows or cones (Fig. 5.14). The tail of 3D arrow/cone base is located at the correspond-
ing vector field position. Arrows/cones show local direction of the field while their size
is proportional to the magnitude of the field at the location point. The format of the
file, in which vector field is stored, is recognized by the vv using the file extension, i.e.,
[.dip] - ASA format, [.cdr] - Curry format, or [.jd3] - FEM3D format.
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(a) 3D arrows (b) Cones

Fig. 5.14: Vector field visualization - 3D arrows versus cones

The implementation of ASA format is the most general. It allows work with time de-
pendent vector fields, i.e., transient field values stored at several time steps per only one
set of field positions or stored as several compound sets of field values and positions
together, for movement simulations. The other two formats assure vv functionality for
static vector fields only. In the case of time dependent fields, the switching between
time moments is done by pressing ’+’/’-’ key.

5.5. advanced tools in vv

Despite of functions described in the previous sections, some additional advanced tools
are implemented in the vv program. These tools are helpful in the interpretation of
large data sets (equivalent ellipsoid, Dali object), the preparation of animated objects
(movies), or the generation of test vector fields.

To prepare animated objects, the user has to activate a spinning mode in the current
viewing scene by pressing the key ’I’. When the spinning mode is activated, moving
the mouse with pressed left button results in spinning/rotating objects around the
axis determined from the tracked positions of the mouse. Pressing ’I’ once more
deactivates the spinning mode. Move the mouse faster/slower results in faster/slower
spinning of active objects. If the user would like to save the spinning scene, he can
press the key ’N’ which starts recording serial snapshots of the vv graphic window.
The snapshots are stored in files with automatically generated names ’vv_nnn.png’,
where ’nnn’ are the numbers of successive pictures. Pressing ’N’ once more stops the
recording. Figure 5.15 presents a few snapshots recorded during spinning of a sample
L-object.
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Fig. 5.15: Sequential snapshots of L-object spinning around free axis

Pressing the key ’D’ generates test distributions of vector fields defined on sam-
ple predefined surfaces, like: rectangle (plane), two perpendicular rectangles (L-shape),
three perpendicular rectangles (corner), or in a cuboidal volume (cube). The distribu-
tions can be uniform or can be concentrated around a predefined center. The number
of centers as well as the concentration damping (according to the Gauss distribution)
are defined by the user. Figure 5.16 presents examples of test distributions generated
by vv.

Fig. 5.16: Sample test concentrated vector field distributions on a plane, L-shape and corner
surfaces, and in a cube
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The test objects created by vv can be saved in ASCII files by pressing the key ’w’.
In this case, all actually viewed objects are stored in separate files with appropriate
extensions in the folder from which the vv has been started or in the home vv folder.

The equivalent ellipsoid tool (EqE), introduced in [163] and [161], is a tool which
can be used for the interpretation of large sets of discrete vector fields data, e.g. cur-
rent dipoles distributions, current density distributions received from reconstructions
in biomagnetical or non-destructive testing problems. Usually, a parametrization of
such distributions to facilitate statistical comparisons between data sets (from different
individuals or from one individual in different conditions or times) is desirable. An
equivalent ellipsoid is defined as 3D ellipsoidal object fitted to a vector field distribu-
tion region in which the magnitude of the field is above a certain threshold (in the
following called supraliminal y distribution). The equivalent ellipsoid is defined by
three orthogonal semi-axes (a = ae1, b = be2, c = ce3), where ei denotes the ith unit
vector of the local ellipsoid coordinate system. The user has to define the threshold Th
used for the determination of the most important region in the analyzed distribution.
The vv program delivers some statistical information about the analyzed distribution
together with some suggestions about the threshold definition. Sample statistics for a
set of current dipoles is given below:

--------------------------------------------------------------------
Maximum = 1.200000 [Am]
Minimum = 0.000000 [Am]
Mean/Max = 14.12 [%]
Variance/(Max*Max) = 2.80 [%]
Standard deviation/Max = 16.73 [%]
Average deviation/Max = 12.74 [%]
Skewness = 1.60 (x39.83)
Kurtosis = 2.75 (leptokurtic)

--------------------------------------------------------------------
...> Thresholds:

--------------------------------------------------------------------
SD/Max = 16.73 %
(Max - SD)/Max = 83.27 %
(Mean + SD)/Max = 30.86 %
(Mean + Max)/2Max = 57.06 %
Power50% = 45.00 %
(Max2 - SD2)/Max2 = 89.90 %
(Mean2 + SD2)/Max2 = 14.90 %
(Mean2 + Max2)/2Max2 = 52.40 %

--------------------------------------------------------------------

where the skewness is a measure of the asymmetry of the distribution about its
mean value, and the kurtosis is a measure of the "peakness" of the distribution, and
Power50% denotes the threshold for the supraliminal distribution with 50% of total
power calculated as a sum of squared magnitudes over all points in the distribution.

Depending on the distribution, the user has to decide if the data should be parti-
tioned or not to find some concentration regions (clusters) in the distribution. To find
partitioning clusters, the vv uses Partition Around Medoids (PAM) algorithm described
in [67]. The PAM is based on the search for k representative objects among all objects of
the data sets. The representative objects are called medoids of the clusters (centroids).
The PAM chooses data points as medoids and works with an arbitrary matrix of dis-
tances between data points associating each data point to the closest medoid. Distances
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can be calculated using any valid distance metric (in the vv Euclidean metric is used).
The algorithm works iteratively so long as no changes in the medoids are observed.

Having representative clusters, the center of gravity (COG) p(k)
COG for each cluster is

calculated as

p(k)
COG =

1
Q(k)

N(k)

∑
i=1

q(k)i p(k)
i , Q(k) =

N(k)

∑
i=1

q(k)i (5.3)

where N(k) is the number of field points in the kth cluster, and q(k)i is the current density

magnitude at the point p(k)
i .

The equivalent ellipsoid for kth-cluster is calculated using the Principal Component
Analysis (PCA) based on the singular value decomposition (SVD) of the 3× 3 covari-
ance matrix [C] constructed from the distances between the vector field points and the
COG:

[C] =
1

N(k) − 1

N(k)

∑
i=1

[p(k)
i − p(k)

COG]
T · [p(k)

i − p(k)
COG] (5.4)

The eigenvectors received from SVD define unit directions e(k)i of the kth equivalent

ellipsoid while the eigenvalues λ
(k)
i sorted in descending order are used for the estima-

tion of the initial values of ellipsoid semi-axes [a(k)0 , b(k)0 , c(k)0 ]T :

[
a(k)0 , b(k)0 , c(k)0

]T
=

[√∣∣∣λ(k)
1

∣∣∣,√∣∣∣λ(k)
2

∣∣∣,√∣∣∣λ(k)
3

∣∣∣]T

(5.5)

Then, each vector field position is associated with a small volume Vvox around it,
called voxel. Voxel is defined as an elementary cube centered around the field position.
The length of voxel edge dvox is set to the average of minimum distances between the
field position and its neighbors calculated for all N points in the distribution:

∀i, j ∈ {1 . . . N} : di = min
i 6=j

∣∣pj − pi
∣∣

dvox =
1
N

N

∑
i=1

di (5.6)

To assess the quality of the kth equivalent ellipsoid, the goodness factor G(k)
0 is defined

as follows:

G(k)
0 =

N(k)
I

N(k)

N(k)
I Vvox

4
3 πa(k)b(k)c(k)

N(k)
I
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i

]2

N(k)
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i=1

[
Q(k)

i

]2
100% (5.7)
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where N(k)
I is the number of field points inside the ellipsoid and a(k), b(k), c(k) are semi-

axes of the ellipsoid. The low value of G(k)
0 indicates that more partitioned clusters

might be required. If the length of the smallest semi-axis c0 is shorter than half the
voxel edge, i.e., the distribution is located on the plane like surface, then c0 is arbitrary
set to 0.5dvox. In this case, instead of (5.7), the following modified formula is applied:

G(k)
0 =

N(k)
I

N(k)

N(k)
I d2

vox

πa(k)b(k)

N(k)
I

∑
i=1

[
Q(k)

i

]2

N(k)

∑
i=1

[
Q(k)

i

]2
100% (5.8)

The size of the equivalent ellipsoid is determined using growing up procedure (bal-
looning technique) with [a(k)0 , b(k)0 , c(k)0 ]T as start values. The procedure works until the
ellipsoid covers all field points in the cluster while the ratio of the semi-axes is kept
constant. In every ballooning step, the goodness factor is calculated and at the end the
semi-axes corresponding to the maximum goodness factor are chosen as axes of the
equivalent ellipsoid.

Figure 5.17 shows equivalent ellipsoids constructed for noisy test volumetric vector
data with four dominant concentration centers (Gauss damped) generated in the cube
120 mm× 120 mm× 120 mm. The distance between field points equals dvox = 5 mm.
The partitioning has been calculated for 4 clusters using the threshold Th = 45[%]
which corresponds to the Power50 threshold suggested by vv.

(a) Test noisy data (b) Partitioned clusters (c) Equivalent ellipsoids

Fig. 5.17: Equivalent ellipsoids for noisy test volumetric data with four concentration centers

Table 5.1 presents details of obtained ellipsoids. The parameter NI is the ellipsoid
inside factor defined as the number of field points located inside the ellipsoid to the
number of all points of the corresponding cluster. The column G0 presents the maxi-
mum of the ellipsoid goodness for which the ellipsoid is constructed. It can be observed
that for all ellipsoids the inside factor is high, i.e., almost all field points are located
inside ellipsoids. The goodness of all equivalent ellipsoids is over 50%. The relative
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Table 5.1: Equivalent ellipsoids for test noisy data

EqE
Center Semi-axes NI G0 P

[mm] [mm] [%] [%] [%]

1 [25.2, 24.7, 24.6] [23.4, 18.4, 14.4] 90.8 56.9 11.6

2 [25.3, 74.9, 50.6] [21.1, 18.5, 14.3] 84.2 53.5 11.7

3 [74.8, 25.5, 50.4] [22.9, 17.8, 13.4] 85.8 54.4 11.0

4 [74.9, 74.8, 74.8] [23.4, 18.0, 13.6] 84.6 50.0 11.7

power P is relatively uniformly distributed between ellipsoids. By adding P- power
of all the ellipsoids, an approximately threshold Power50, the start threshold in the
EqE-reconstruction procedure is obtained.

The second example presents the application of equivalent ellipsoids to interpreta-
tion of current density distributions reconstructed on a cerebral cortex of a patient with
pharmacological induced migraine (nitroglycerin spray). The 31 channels DC MEG has
been measured using the Philips one dewar biomagnetometer system [34]. The system
has recorded one hour of continuous data with a sampling rate of 40 Hz (0− 15 Hz
bandwidth). Artifact rejection has been performed on the basis of the magnetic refer-
ence sensors. Large amplitude waves have been identified in the raw data and have
been used for the source reconstruction using the minimum norm estimation with a
one compartment BEM model of the patient head. The source model consists of 17480

current density vectors located on the segmented brain surface. The average closest
mutual distance of current density vectors equals 3.2 mm.

Figure 5.18 shows the interpretation of the reconstructed current density using only
one equivalent ellipsoid obtained for the threshold Th = 57.8%. The threshold Th has

(a) Source model (b) Th = 57.8% (c) Equivalent ellipsoid

Fig. 5.18: Current density distribution on a cerebral cortex surface and equivalent ellipsoid con-
structed for threshold Th = 57.8%
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been chosen using the formula: 100%− 4σ, where σ = 10.55% is the standard devi-
ation calculated for the analyzed distribution. The semi-axes [a, b, c] of the calculated
EqE are equal to [40.1 mm, 20.9 mm, 4.6 mm]. Although the inside ellipsoid factor is
high (NI = 88.4%), the goodness of the EqE is low (G0 = 8.7%). The reason for this
is the complicated shape of the cortex surface on which the reconstructed current den-
sity distribution is located. In order to improve the data interpretation more partition-
ing clusters have to be used. The partitioning with 3 and 4 centers has been tested
(Fig. 5.19a and Fig. 5.19b). Visual inspection shows that using 4 centers results in better
clusters separation than for 3 centers where one of the clusters contains also points ly-
ing on the adjacent wall of the cortex surface. Equivalent ellipsoids for the partitioning
with 4 clusters are shown in Fig. 5.19c.

(a) 3 clusters (b) 4 clusters (c) Equivalent ellipsoids

Fig. 5.19: Current density distribution reconstructed on a cerebral cortex surface and equivalent
ellipsoids for 3 and 4 clusters found for threshold Th = 57.8%

Details of found equivalent ellipsoids are given in Table 5.2. The estimated voxel
size obtained as the average closest mutual distance of field points in the analyzed
distribution equals dvox = 2.43 mm.

Concluding, it can be said that the interpretation of real data is not straightforward.
Although the equivalent ellipsoid is a robust tool and helps significantly to interpret

Table 5.2: Equivalent ellipsoids for sample neurological data

EqE
Semi-axes NI G0 P

[mm] [%] [%] [%]

1 [12.6, 9.4, 2.7] 90.7 35.2 5.3

2 [11.5, 8.6, 1.2] 86.7 38.2 4.2

3 [11.6, 7.6, 2.5] 75.6 33.1 6.9

4 [ 9.6, 7.0, 2.5] 100.0 41.2 2.2
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large distributions of vector data, it requires intensive user interaction especially for
data spread out on complex curved surfaces.

Let a sample data distribution with one concentration center be given on the L-shape
surface as in Fig. 5.20. Using one cluster partitioning in the EqE-procedure results in

(a) L-shape distribution (b) G0 = 17.9% (c) G0 = 77.8% / 83.1%

Fig. 5.20: Sample data on the L-shape surface with one concentration center. Equivalent ellipsoids
for partitioning using 1 and 2 clusters and threshold Th = 50%

construction of the equivalent ellipsoid with a very low goodness (G0 = 17.9%). For the
proper data interpretation, i.e, to fit equivalent ellipsoids better to data on the L-shape
surface, the partitioning with 2 clusters has to be applied.

To overcome problems with the interpretation of data located on complicated sur-
faces, the Dali object introduced in [160] can be applied. The idea of creating the Dali
object was inspired by the well known painting of Salvador Dali "The persistence of
memory" (Fig. 5.21).

Fig. 5.21: "The persistence of memory", Salvador Dali (1931), MoMA, New York

To create Dali object, first, the user has to define the threshold Th for marking the
most representative region in the analyzed distribution (similarly to the EqE-procedure).
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Next, the partitioning into suitable number of clusters around concentration centers
has to be performed. The Dali tool uses for partitioning the following algorithm: (1)
the position of the maximum field value in the thresholded distribution is searched,
(2) around this position, using surface neighborhood information, a simply connected
mesh of triangles is created, forming the first cluster, (3) all points in the found clus-
ter are marked as active, (4) the procedure checks if all points in the distribution are
active, if not, the procedure starts with (1) to look for the next cluster using only not
marked positions. Dali objects are constructed for each found cluster separately in a

(a) Vector field in cluster (b) Outline points (c) Fourier points (d) Dali object

Fig. 5.22: Construction of the Dali object for a cluster located on the L-shape surface

few steps. Using the surface neighborhood information, the unsorted cluster outline is
created (Fig. 5.22b). Then, the outline points are sorted using counter clockwise (CCW)
direction and are connected to produce a closed polygon. Having the outline polygon,
the parametric Fourier representation is found [96] (Fig. 5.22c). At the end, the Dali
object represented by a surface spanned over the found Fourier points is constructed
(Fig. 5.22d).

The parametric Fourier representation is calculated as follows. Let P(t), t ∈ [0, 1] be
a closed 3D piecewise linear polygon with vertices pi ∈ R3, i = 0, . . . , M and p0 = pM.
For every point pi, the following symbols are defined

∆ti = ‖pi − pi−1‖, T =
M

∑
i=1

∆ti = 1, ti =
i>0

∑
j=1

∆tj, t0 = 0 (5.9)

The N-harmonic parametric representation (PFRN) of closed 3D polygon is defined as

P(t) = a0 +
N

∑
k=1

(ak cos 2πkt + bk sin 2πkt) (5.10)
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where coefficients a0, ak, bk are given by [75]

a0 =
M

∑
i=1

pi + pi−1

2
(ti − ti−1) (5.11)

ak =
2

(2πk)2

M

∑
i=1

pi − pi−1

ti − ti−1
(cos 2πkti − cos 2πkti−1) (5.12)

bk =
2

(2πk)2

M

∑
i=1

pi − pi−1

ti − ti−1
(sin 2πkti − sin 2πkti−1) (5.13)

The first example presents Dali objects created for a sample artificial distribution
shown in Fig. 5.20 using the threshold Th = 50%. Figure 5.23 shows Dali objects created
for 1, 2, and 5 spatial harmonics used in the parametric Fourier representation.

(a) PFR1 (b) PFR2 (c) PFR5

Fig. 5.23: Dali objects for the L-shape distribution with one concentration center using n = 1, 2,
and 5 spatial harmonics

It can be observed that increasing the number of used spatial harmonics results
in better fitting of the Dali object to the distribution. The relative surface areas of
calculated Dali objects are equal to: SN/SCDD = 86.0%, 97.2%, and 99.2% for the PRF
with 1, 2, and 5 spatial harmonics, respectively. The parameter SCDD denotes the area
of simply connected triangular mesh spanned over the cluster. In multi subject studies,
semi-axes of the equivalent ellipsis calculated from the first spatial harmonic of the
found PFR can be used as interpretation parameters for evaluation of the quality of
various distributions [159].

The second example presents results for a realistic data [160]. The measurements
have been taken in a magnetically shielded room ( AK3b, Vacuumschmelze, Hanau,
Germany) at the Biomagnetic Center in Jena, Germany. The magnetic field has been
recorded with the Philips twin dewar biomagnetometer system (2× 31 channels) [34].
The magnetocardiogram of a patient with non-sustained ventricular tachycardia de-
veloped after anterior left ventricular myocardial infarction has been measured. The
subject has been lying in a supine position and the two dewars have been positioned
above the thorax so that they covered the magnetic field maximums. Signals have been
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recorded for 600 s at a sampling rate of 1000 Hz. To stabilize the baseline, an analog
high pass filter (first order with the cutoff frequency fc = 0.036 Hz) has been applied
to the analog signals. A two step averaging procedure as described in [62] in order to
improve the signal-to-noise ratio has also been applied. A noise level of 50 fT has been
estimated for both dewars. The last 40 ms of the bi-directional 30 Hz highpass filtered
depolarization signals (late potentials, LP) have been used for inverse computations
(Fig. 5.24).

Fig. 5.24: Diaphragmal view on the 3D magnetic resonance torso image and magnetic late po-
tentials of heart signals (analyzed time interval is marked with gray). Zoomed color shaded left
ventricle (VL) shows maximum current dipoles moments during the LP interval

3D MRI data set of the chest of the patient has been also registered. The BEM model
consisting of the left and right lungs as well as the outer torso surface has been applied
for the magnetic field computations (forward model). Surfaces of lungs have been
eroded by 3 mm in order to avoid numerical problems arise when the distance between
the left ventricle (lv) and the lungs [59] is too small. The surface of the left ventricle
has been segmented using the MRI data set and is subsequently used as the source
domain. The source space consists of 1022 current dipoles distributed on the lv-surface
with an average spacing of 4.7 mm. The ratio of the electrical conductivity of the torso
and lungs is equal to 5. Moments of the current dipoles have been determined using
the minimum L2-norm least squares algorithm [39] for all time steps.

Figure 5.25 shows the obtained distribution of reconstructed current dipoles on the
lv-surface for a moment of LP-time interval when the maximum of current dipoles
reaches the global maximum.
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(a) Current dipoles (b) Th = 63%

Fig. 5.25: Left ventricle - (a) reconstructed current dipoles, (b) the most representative cluster

Figure 5.26 presents the Dali object constructed for a dominant activity in the lv-
source space using the threshold Th = 63% which corresponds to Power50% indicator.
The current dipole with the maximum moment is found at point [27.3 mm, 31.2 mm,

(a) PFR1 (b) PFR3 (c) PFR5

Fig. 5.26: Left ventricle - Dali objects constructed for Power50% cluster (Th = 63%) and the PFR
with n = 1, 3, and 5 spatial harmonics

22.5 mm] where the coordinates are given in a local coordinate system located at the
center of gravity of the left ventricle. The center of gravity of the outline current dipoles
at [17.3 mm, 21.4 mm, 16.5 mm] is determined for the Power50%- cluster and is located
at a distance of 15.2 mm from the maximum current dipole. The Dali object is obtained
using 1, 3, and 5 spatial harmonics in the parametric Fourier representation. The semi-
axes of the equivalent ellipsis are equal to [a, b] = [21.7 mm, 23.1 mm]. The semi-axes
can be used as comparative parameters in a statistical analysis of current spread activity
on the left ventricle. The relative surface area of the Dali object for PFR1, PFR3, and
PFR5 are equal to S1...3/SCDD = 93.6%, 96.1%, and 96.8%, respectively.
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5.6. summary

In this chapter, the postprocessing program vv for 3D visualization of various objects
has been presented. Scalar and vector discrete fields, BEM/FEM meshes stored in many
formats, electric and magnetic sensors of various measuring systems, and MRI scans
can be visualized.

Several different objects can be simultaneously displayed in the vv- graphic window.
For the convenience of the user, the vv is equipped with a graphical interface (vvgui)
which allows easy selection of files as well as setting of principle vv options. The vv is
an interactive program which can be controlled by mouse and/or by pressing a proper
key on a keyboard.

Together with 3D objects, the vv can present scalar fields on 3D surfaces associated
with systems of sensors. Vector fields are presented in 3D space as 3D arrows or cones.

Additionally, several simple and advanced functions are implemented in the vv. The
list of most important vv- functions includes: export of viewed objects in several for-
mats, print snapshots of the actual graphic window, spinning viewed scene for record-
ing animations, generation of test data, the equivalent ellipsoid and the Dali object
tools. The last two functions are important for an interpretation of large data and in
statistical comparisons between data sets from different experiments/simulations or
from one experiment under other conditions or time.

The vv is without any restrictions free software with full access to the source C code
which makes the program easy to adopt to any windows system and to extend its
capabilities with new features.
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nowoczesne metody w analizie wybranych

problemów pola elektromagnetycznego

W monografii przedstawiono wyniki kilkunastu lat badań autora prowadzonych w Ka-
tedrze Elektrotechniki Teoretycznej i Informatyki na Wydziale Elektrycznym Politech-
niki Szczecińskiej (obecnie Zachodniopomorskiego Uniwersytetu Technologicznego w
Szczecinie) oraz w FG Theoretische Elektrotechnik, Technische Universität Ilmenau
(Niemcy). Monografia składa się z pięciu rozdziałów, w których opisano niektóre
metody stosowane w analizie problemów pola elektromagnetycznego.

Rozdział 1 jest poświęcony metodzie elementów skończonych (MES). Wychodząc
z założenia, że czytelnik zna podstawy metody elementów skończonych, nie opisano
samej metody, a skupiono się na przedstawieniu pewnej klasy funkcji kształtu, która
może być zastosowana w MES, a mianowicie wektorowych funkcji kształtu dla prosto-
padłościennego elementu skończonego. Ich realizacja węzłowa, krawędziowa i ścienna
została szczegółowo opisana i przedyskutowana.

W rozdziale 2 przedstawiono analizę ogólnego trójwymiarowego zagadnienia pola
magnetostatycznego, wykorzystującą MES z różnymi sformułowaniami opisującymi
pole magnetyczne. W pierwszej części omówiono analizę pola magnetycznego z wyko-
rzystaniem potencjałów skalarnych. Następnie opisano modelowanie trójwymiarowych
uzwojenień z prądem. Przedyskutowano też wykorzystanie wektorowego potencjału
magnetycznego A oraz bezpośredniego opisu, za pomocą wektora natężenia H, w
analizie pól magnetostatycznych. W ostatniej części rozdziału przedstawiono realizację
sformułowań A/H z rozdzielonymi składowymi w metodzie elementów skończonych
wykorzystującej elementy krawędziowe.

W rozdziale 3 zajęto się problemem rekonstrukcji powierzchni granicznej pomiędzy
dwoma swobodnie oscylującymi, niemieszalnymi, elektrycznie przewodzącymi pły-
nami, przez które przepływa wymuszony prąd stały. Na początku opisano system
do identyfikacji powierzchni granicznej, wykorzystujący pomiary pola magnetycznego
wokół walcowego zbiornika z płynami (koncepcja tomografii magnetycznej). Następ-
nie przedstawiono metody obliczania pola magnetycznego wokół zbiornika z oscylu-
jącymi płynami wytwarzanego przez przepływający przez nie prąd elektryczny. Sfor-
mułowano i przeanalizowano problem identyfikacji dominującej harmonicznej w oscy-
lującej powierzchni granicznej. Podano i przedyskutowano metody identyfikacji wyko-
rzystujące prosty algorytm genetyczny, technikę wyszukiwania bezpośredniego oraz
współczynnik korelacji wzajemnej.

W rozdziale 4 opisano metody analityczne i semianalityczne użyteczne przy mo-
delowaniu układów wiroprądowego badania materiałow z wykorzystaniem pomiaru
siły Lorentza (LET). Na początku przeanalizowano dwuwymiarowe modele LET. Po-
dano sposoby obliczania siły Lorentza oddziałującej na magnes trwały umieszczony
nad przewodzącą płytą przesuwaną ze stałą prędkością. Dodatkowo opisano metodę
uwzględniania defektów oraz skończonej długości płyty w obliczaniu siły Lorentza.
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Następnie przedstawiono koncepcję magnetycznych dipoli do optymalnego modelowa-
nia walcowych i prostopadłościennych magnesów trwałych. Ostatnią część rozdziału
poświęcono trójwymiarowym układom LET. Przedstawiono w niej semianalityczną
metodę modelowania pojedynczego defektu w przewodzącej ruchomej płycie (ani-
zotropowej lub izotropowej), wykorzystującej tzw. obszar rozszerzony defektu.

Rozdział 5 poświęcono zagadnieniom wizualizacji obiektów i pól skalarnych / wek-
torowych w przestrzeni trójwymiarowej. Na przykładzie programu vv przedstawione
zostały różne techniki wizualizacji oraz interaktywnej interpretacji obiektów i pól.
Omówiono szczegółowo technikę równoważnych elipsoid stosowaną w analizie niejed-
norodności w polach wektorowych. Opisano również nową klasę obiektów, tzw. obiek-
tów Dalego, które mogą być wykorzystywane do interpretacji pól wektorowych zdefi-
niowanych na powierzchniach 3D.
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