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Abstract.  The paper develops analysis for models of uncertainty for dynamical, discrete-
time control systems on finite time horizon. Various models of uncertainty are analysed:
additive, subtractive, and multiplicative. An analysis for electrical circuit with real, per-
turbed parameters is carried out. It is assumed, that the uncertain parameters are bounded,
and could be described by rectangular distribution. A few cases of systems are considered.
In the first case system is time-invariant. In the second case, system is time-variant. Output
errors are estimated using discrete evolution operators. As a comparison sensitivity analysis
for time-invariant sis has been carried out. The results from estimations are compared to the
set of the worst-case uncertain parameters related to output error.
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1. INTRODUCTION

Uncertainty can be introduced into model of the sys-
tem in many ways. Most often the method depends
on used description. It is possible to describe the
system by difference or differential equations, recur-
rent state space model or using operators. The most
known is the Laplace’s operator, which gives well
known transfer function, but also it is possible to use
evolutionary operators defined in (Emirsajłow 1999;
Orłowski 2000/1-2, 2001) or operators in general.

Apart from the system description it is possible to
distinguish six structures that allow introducing un-
certainty into the system.

2. STRUCTURES OF UNCERTAINTIES

Six uncertain model’s structures are presented below;
G can be a matrix, transfer function or system’s op-
erator. Perturbation ∆ can be a scalar, matrix, transfer
function or operator. The most popular are scalars
and matrices. All structures can be used both for lin-
ear time-invariant and time-varying or non-linear
systems.

2.1. Additive errors
The typical uncertainties for additive errors are addi-
tive plant errors, uncertain right half plane zeros
(Hoary 1996). Input responses to output commands
are the typical performance specification. Block dia-
gram for systems with additive errors is drawn on
Fig. 1. Mathematical description (1) and conditions
for invertibility for a matrix, (2) for (I+G∆) and (3)
for G∆ are following 

  ∆ = + ∆G G             (1)

max min( ) ( )σ σ∆ < +I G  (2), max min( ) ( )σ σ∆ < G   (3)

∆

G +
+

+

Fig. 1. Additive perturbation.

2.2. Subtractive errors
The typical uncertainties for subtractive are low fre-
quency plant parameter errors; changing number of
right half plane poles. Output errors to input com-
mands and disturbances are the typical performance
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specification. Block diagram for systems with sub-
tractive errors is drawn on Fig. 2. Mathematical de-
scription and conditions for invertibility are as follow
(I+G∆) (5) and G∆ (6). 

1 1( )− −

∆
= + ∆G G             (4)

1

max min( ) ( )σ σ −∆ < +I G  (5), 1

max min( ) ( )σ σ −∆ < G  (6)

∆

G
+

-

Fig. 2. Subtractive perturbation.

2.3. Post-Multiplicative errors
The typical uncertainties for post-multiplicative er-
rors are output errors, neglected high frequency dy-
namics; changing number of right half plane zeros.
Sensor noise attenuation, output responses to output
commands are the typical performance specification.
Block diagram for systems with post-multiplicative
errors is drawn on Fig. 3. Mathematical description is

 ( )∆ = ⋅ + ∆G G I           (7)

∆

G +
+

+

Fig. 3. Post-Multiplicative perturbation.

2.4. Pre-Multiplicative errors
The typical uncertainties for pre-multiplicative errors
are input errors, neglected high frequency dynamics,
changing number of right half plane zeros. Input re-
sponses to input commands are the typical perform-
ance specification. Block diagram for systems with
pre-multiplicative errors is drawn on Fig. 4. Mathe-
matical description is 

( )∆ = + ∆ ⋅G I G           (8)

∆

G+
+

+

Fig. 4. Pre-Multiplicative perturbation.

Conditions for invertibility are the same for both post
and pre-multiplicative errors (I+G∆) (9) and G∆ (10).

1

max min( ) ( )σ σ −∆ < +I G   (9),  max ( ) 1σ ∆ <     (10)

2.5. Post-Divisional errors
The typical uncertainties are low frequency plant pa-
rameter errors, changing number of right half plane
poles. Output sensitivity, output errors to output
command disturbances are the typical performance
specification. Block diagram for systems with post-
divisional errors is drawn on Fig. 5. The system can
be described by

1( )−∆ = ⋅ + ∆G G I            (11)

∆

G
+

-

Fig. 5. Post-Divisional perturbation.

2.6. Pre-Divisional errors
The typical uncertainties are low frequency plant pa-
rameter errors, changing number of right half plane
poles. Input sensitivity and input errors to input
command disturbances are the typical performance
specification. Block diagram for systems with pre-
divisional errors is drawn on Fig. 6. The system can
be described by

1( )−∆ = + ∆ ⋅G I G           (12)

∆

G
+

-

Fig. 6. Pre-Divisional perturbation. 7

Conditions for invertibility are the same for both
structures (I+G∆) (13) and G∆ (14) can be described
by   max min( ) ( )σ σ∆ < +I G   (13),  max ( ) 1σ ∆ <      (14)

3. ANALYSIS OF AN ELECTRICAL CIRCUIT
WITH UNCERTAINTIES

For given system, some aspects determine the model
of uncertainty. First is modelling. Some structures are
more suitable, and the model is clearer. Also it is
easier to understand, how system works. Second is
computational. Some tools are designed for using
with a certain model and cannot be use with others.
Fig. 7 shows electrical circuit, in which some pa-
rameters are uncertain.
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Fig. 7. Electrical circuit RLC.

Continuous-time state-space model is

[ ]

1 1
d ( )

( ) ( )1000
dt

01000 0

( ) 0 ( )R

R
t

t u tL L C L

u t R t

− −
= ⋅ + ⋅⋅ ⋅

= ⋅

   
   
   

  

x
x

x

  (15)

where 
T
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t
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∫x .

The state variables have been chosen to minimize the
norm of system matrix A. For state variables given
above the norm is 1051=A . If the state variables

were following 
T

0

( ) ( )
t

t i t i dt= ⋅
 
  

∫x , the norm

would be 610=A . Minimisation of norm of matrix
A is required for the method given by equations (17-
19).

Corresponding discrete-time state-space model is
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Values in simulation: 55 10 sT −= ⋅  and time horizon,
N=50, 0,1, , 1k N= −… .

Estimates of output error have been calculated using
theorems from (Emirsajłow 1999; Orłowski 2000/1,
2001). The main results are
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under condition 
1

Aδ
−

< FL         (19)

Equation (17) is the estimate of trajectory error norm.
Moreover equation (18) denotes norm of terminal
output error.

Operator (( ) , ( ) )n N n N∈FL R RL  is defined for

k=2,3,..,N and ( ) ( )ni ∈h RL  as evolutionary by
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or equivalently by block matrix operator
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where

( , ) ( )
k

j i

i k j
=
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Operator KF is a block vector of the last row of ma-
trix (21). Equivalently KF can be computed by sub-
stituting k=N in equation (20). Using matrix notation,
operator Ĉ  is defined as follows

(0)
ˆ

( 1)N

 
 =  
 − 

C 0 0
C 0 0

0 0 C
%  (23)

There are two different ways for computing the
norms of operators LF, ˆ FCL , CKF. First is based on
discrete difference Riccati equation and was pre-
sented in (Emirsajłow 1999; Orłowski 2000/1). Sec-
ond is based on singular value decomposition
(Orłowski 2001) and other matrix tools. All opera-
tors’ norms in this paper have been computed using
matrix notation and matrix tools.

3.1. Uncorrelated perturbations of linear time-
invariant system

Parameters of the system are as follows:

( ) ( )1 1 1 FC n CC Cδ δ µ= + ⋅ = + ⋅ ,

0.01, 0.01Cδ ∈ − , 0.99,1.01 FC µ∈    (24)

( ) ( )1 1 1HL n LL Lδ δ= + ⋅ = + ⋅ ,

0.03, 0.03Lδ ∈ − , 0.97,1.03 HL∈     (25)



( ) ( )1 1 100R n RR Rδ δ= + ⋅ = + ⋅ Ω ,

2 0.1, 0.1Rδ ∈ − , 90,110R∈ Ω           (26)

Coefficients of additive perturbations and their upper
and lower bounds can be calculated as follow
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1 nc R Rδ − −= − , 1 nc R Rδ + += −        (33)

The discretised model of the system can be rewritten
in following form
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Using the technique described in (Orłowski 2001),
the operator’s norms 

2
,  

∞
⋅ ⋅  have been calculated

and collected in Table 1. Then using the tools for
analysis uncertain systems, estimates of

2
( ) ( )p∆ ⋅ − ⋅y y  (dotted line) and 

2
( ) ( )pN N∆ −y y

(triangle) have been obtained and drawn on Fig. 8.

The real error’s norm characteristics 
2

( ) ( )p∆ ⋅ − ⋅y y
have been obtained for extreme positive and negative
(solid line) perturbation’s matrices.

Table 1. Operators’ norms 
2

⋅  and
∞

⋅ .
Operator \ Norm

2
⋅

∞
⋅

FL 31.6198 62.9636
FN 7.0923 1.4112

Ĉ 100 100

B̂ 3.0000e-005 3.0000e-005
FK 7.0226 62.9636

⋅ FC L 2.9062e+003 6.0107e+003

⋅ FC N 613.8774 134.4651

⋅ FC K 671.9687 6.0107e+003

Calculated norms have been collected in Table 2.
Fig. 9 shows output trajectory estimates

p p∆ ∞
± −y y y  (dotted line) and terminal output

vector (triangles). Trajectories obtained for real ex-
treme matrices perturbations are drawn solid line.

Table 2. Estimates and extreme norms 
2

⋅  and
∞

⋅ .
Norm Esti-

mate
Ex-
treme
posit.
value

Ex-
treme
negat.
value

Rela-
tive
error

2
( ) ( )p∆ ⋅ − ⋅y y 0.1031 0.0702 0.0651 0.4696

2
( ) ( )

p
N N

∆
−y y 0.0237 0.0154 0.0141 0.5460

( ) ( )p∆ ∞
⋅ − ⋅y y 0.0279 0.0154 0.0141 0.8153

( ) ( )
p

N N
∆ ∞

−y y 0.0279 0.0154 0.0141 0.8153
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Fig. 8. Errors norms 
2

( ) ( )p∆ ⋅ − ⋅y y  (solid) and

2
( ) ( )pN N∆ −y y  (stars) characteristics in

function of time and their upper bounds (dotted,
triangle).
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Fig. 9. Output trajectories ( )∆ ⋅y  (solid), ( )p ⋅y

(dashed) in dependence of time, ( )N∆y  (stars)

and their upper estimates p p∆ ∞
± −y y y

(dotted, triangles).

3.2. Sensitivity analysis for time-invariant system
Sensitivity analysis is very well known tool for
analysis of uncertain control systems in time-domain.
Comparative analysis for system described in section
3.1 using sensitivity analyses has been carried out.
Function of output error follows from total differen-
tial and the main formula is

( ) ( ) ( )
( )

y y y
y R L C

R L C

∂ ⋅ ∂ ⋅ ∂ ⋅
∆ ⋅ ≈ ⋅ ∆ + ⋅ ∆ + ⋅ ∆

∂ ∂ ∂
  (36)

Estimated output of uncertain system is equal to

( ) ( ) ( )y y y∆ ⋅ = ⋅ ± ∆ ⋅  (37)

Numerical data has been calculated using Matlab.
Fig. 10, 11 show output trajectory for nominal (un-
perturbed) system (dashed), upper and lower bounds
of sensitivity estimates (dotted) and trajectories of
systems with extreme parameters’ values (solid). Fig.
10 shows first 1.5ms likewise Fig. 9. Fig. 11 shows
the same characteristics plotted for longer (80ms)
time.
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Fig. 10. Output trajectories and estimates for uncer-
tain system (1.5ms).

Estimates obtained from sensitivity analysis are
nearby system with extreme parameters. Sensitivity
analysis does not guarantee extreme bounds for sys-
tem. Analysis of system using (17-19) always gives
guaranteed extreme bounds. Disadvantage of the
method is more conservative estimate.
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Fig. 11. Output trajectories and estimates for uncer-
tain system (80ms).

3.3. Uncorrelated perturbations of linear time-
varying system

Now it is assumed, that the system is time varying.
Parameters C and L are the same as in previous ex-
ample. Parameter R is defined as follow

( ) 1 100n

k
R k

N
= + ⋅ Ω 
 
 

   (38)

( ) ( ) 10 , ( ) 10n nR k R k R k= − Ω + Ω         (39)

hence ( ) ( ) 10nR k R k− = − Ω , ( ) ( ) 10nR k R k+ = + Ω

Calculated norms have been collected in Tab. 3. Fig.
12 shows output trajectory estimates p p∆ ∞

± −y y y
(dotted line) and terminal output vector (triangles).
Trajectories obtained for real extreme matrices per-
turbations are drawn solid line. Estimates of upper
bounds output trajectories and output two signals are
drawn on Fig. 12.
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Fig. 12. Output trajectories ( )∆ ⋅y  (solid), ( )p ⋅y

(dashed) in dependence of time, ( )N∆
y  (stars)

and their upper estimates p p∆ ∞
± −y y y

(dotted, triangles).

Using the technique described in (Orłowski 2001),
the operator’s norms 

2
,  

∞
⋅ ⋅  have been calculated.

Then using the tools for analysis uncertain systems,



estimates of 
2

( ) ( )p∆ ⋅ − ⋅y y  (dotted line) and

2
( ) ( )pN N∆ −y y  (triangle) have been obtained and

drawn on Fig. 13. The real error’s norm characteris-
tics 

2
( ) ( )p∆ ⋅ − ⋅y y  have been obtained for extreme

positive and negative (solid line) perturbation’s ma-
trices.

Table 3. Estimates and extreme norms 
2
⋅  and 

∞
⋅ .

Norm Esti-
mate

Ex-
treme
posit.
value

Ex-
treme
negat.
value

Rela-
tive
error

2
( ) ( )p∆ ⋅ − ⋅y y 0.1305 0.0850 0.0792 0.5342

2
( ) ( )

p
N N

∆
−y y 0.0321 0.0200 0.0186 0.6037

( ) ( )p∆ ∞
⋅ − ⋅y y 0.0427 0.0200 0.0186 1.1303

( ) ( )
p

N N
∆ ∞

−y y 0.0427 0.0200 0.0186 1.1301
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Fig. 13. Errors norms 
2

( ) ( )p∆ ⋅ − ⋅y y  (solid) and

2
( ) ( )pN N∆ −y y  (stars) characteristics in

function of time and their upper bounds (dotted,
triangle).

4. CONCLUSION

The analysis of the uncertain system and the devia-
tions’ estimates are accomplished in time domain and
in finite time horizon. For time invariant and periodi-
cally varying systems, the operators are invariant and
could be evaluated only once. The estimates com-
puted in H∞ space are more conservative then their
equivalents in H2. Nevertheless, when the process
and measurement noises are normal and not negligi-
ble, it is easier to estimate the energy or power of the
noises than the peak noise value.

The estimates’ quality depends on time horizon and
properties of the model. When the time horizon is
shorter, the estimate is less consrvative and vice
versa. On the other hand long time horizon is better ,
when there are considered effects of noises.

The developed estimates can be used also in various
control desgn tasks for perturbed non-stationary
linear discrete time systems. Proposed method does
not require detailed knowledge about the system. It is
enough to know only coefficients of the model, and
their deviations’ estimates. The coefficients can be
taken, for example by model identification.
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