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Abstract.  The paper develops frequency analysis tools for linear time-varying (LTV), discrete-
time systems. The main method is based on the properties of the Singular Value De-composition 
(SVD), Discrete Fourier Transform (DFT) and Power Spectral Density (PSD). The analysis is 
carried out for a system with first order dynamics. The general objective of this paper is to 
examine how system frequency diagrams are depend on the variability of particular parameters. 
Especially, it is examined how the variability of three matrices of the state space model (scalars, in 
the 1st order case)  influence the approximated Bode diagrams. A few cases of the variability of 
each matrix, in particular with different frequencies and phase shifting, are considered. Moreover, 
the analysis is carried out for different cases of the system parameters. The results of analysis for 
each case are shown in four diagrams: amplitude, phase, impulse and step responses. On the basis 
of these examples the most important features in  each example are characterized. 

 
Key words: Discrete-time systems, Time-varying systems, Non-stationary systems, Frequency 
methods. 

 
1 INTRODUCTION 

The concepts, which are used in the frequency analysis of LTV systems in this work, are based 
on the idea of connecting the Singular Value Decomposition (SVD), Discrete Fourier Transform 
(DFT) and the properties of Power Spectral Density (PSD). Until now only a few papers in this field 
are published see e.g. [Orlowski, 2003, 2004]. 

The proposed concepts enable to obtain numerically, some equivalents of Bode diagrams for 
LTV systems. The diagrams have similar properties to classical Bode diagrams for LTI systems. The 
approximated Bode diagrams are given by a finite set of frequencies (or singular vectors) and their 
corresponding gains. Of course some information is neglected and some is transcribed into the 
diagrams. It should be also clear that the information included in diagrams cannot be extracted for 
specific time samples.  

An important advantage of SVD-DFT method is that the results obtained for LTI systems are 
almost identical as the classical Bode diagrams.  

2 MODEL DESCRIPTION 

Dynamic, discrete-time system can be given by set of difference equations, called the state 
space model 

( 1) ( ) ( ) ( ) (p pk k k k+ = ⋅ + ⋅x A x B v )p k

p k

R

,    (1) 

( ) ( ) ( )p k k= ⋅y C x ,   k∈N,    xp(0)=0,  (2) 

where  is nominal state,  is nominal control,  is 

nominal output, and A R , ,  are system’s matrices.  

Nn
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Equivalently the system can be given using following operators 
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0
ˆ ˆˆ ˆ ˆˆ ˆp p= ⋅ + ⋅y CLB v CN x  (3) 

Detailed description of such operators can be found in [Orlowski. 2001, 2004] 

3 BODE DIAGRAMS APPROXIMATION 

Approximated Bode diagrams follow from the relation between input and output power 
spectral density and amplitude diagrams. Detailed proof can be found in [Orlowski, 2004]. Amplitude 
diagram can be approximated by  

22
k

1

1
( ) DFT [ ]

N

k j
jN

ω σ
=

= ⋅ ⋅∑G ju  (4) 

and similarly the phase diagram by  

k

1 k

DFT [ ]
( ) arg
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N
j

k j
j j

ϕ ω σ
=

= ⋅
 

 
∑
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Figure 1. Bode diagrams, impulse and step responses for delay system. 

4 SELECTED PROPERTIES OF 1ST ORDER LTV SYSTEM 

Selected results of frequency diagrams approximation for discrete-time LTV system with first 
order dynamics using discrete operators, SVD-DFT are presented below. In all examples sampling 
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period Tp=0.04 and simulation horizon N=100. As the variability function for time-varying (TV) 

system matrices have been chosen rectangular function (RF) k
T
 
 
 

Π  having two levels: lower equal to 

zero and higher equal to 1. The wave starts from lower level with period T and filling 50%. 

For all examples there are computed and plotted four diagrams: amplitude, phase, impulse and 
step responses. 

4.1 Delay system with TV input matrix 

First simulation has been carried out for simple one sample delay system given by following 
one dimension matrices of the model (1-2). 

A( ) 0,  B( ) ,  C( ) 1
2
k

k k k= = Π 
 
 

=  (6) 

Corresponding diagrams are plotted on fig. 1. Amplification level on amplitude diagram is 
equal to –3dB. Such value is a result of lower power of signal B(k) then for ones signal. The B(k) 
signal has 2  times less energy than ones signal, what corresponds in –3 dB damping of magnitude. 
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Figure 2. Bode diagrams, impulse and step responses for inertial system with TV input matrix. 
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Figure 3. Bode diagrams, impulse and step responses for system with TV shifted input matrix and A(k)=0.5. 

4.2 Inertial system with TV input matrix 

Following simulation has been carried with changed values of matrix A and period of B. 

A( ) 0.5,  B( ) ,  C( ) 1
4
k

k k k= = Π 
 
 

=  (7) 

Corresponding diagrams shows fig. 2. In general they are similar to LTI case with B=1. The 
difference is similar to example 1: an amplitude diagram is damped by 3 dB (expected starting level 
for LTI system is equal to 6 dB). Such damping is caused by the power’s change of B(k) signal. Other 
important fact is that the period T of B(k) does not influence on the diagrams. 
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Figure 4. Bode diagrams, impulse and step responses for system with TV shifted input matrix and A(k)=0.9. 

4.3 System with TV shifted input matrix 

Now the example from section 4.2 is modified by change in period and time shift in B(k) 
matrix. System matrices are following. 

1
A( ) 0.5,  B( ) ,  C( ) 1

2
k

k k k
+

= = Π 
 
 

=   (8) 

Corresponding diagrams shows fig. 3. Comparing this example to previous one it can be seen 
that not only amplitude but also phase of B(k) matrix does not influence Bode SVD-DFT diagrams. 
Changes are visible only on step responses.  

In the case when only B matrix is time varying, Bode diagrams are very similar to LTI case. 
For better evaluation there are analysed two similar examples. First with A(k)=0.9 and second with 
A(k)=-0.5. Figs. 4 and 5 shows diagrams and responses for the first and second system respectively. 

R190 - 5 



7th International Scientific - Technical Conference - PROCESS CONTROL 2006 
June 13 – 16, 2006,  Kouty nad Desnou, Czech Republic 

 
_____________________________________________________________________________________________________ 

If the system has negative amplification in steady state, there will be change on phase plot 
similar to LTI case, e.g. 180 degrees shift for frequency f=0.  
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Figure 5. Bode diagrams, impulse and step responses for system with TV input matrix and A(k)=-0.5. 

Generalization of such system in LTV case can be negative system, which must have negative 
amplification for f=0 or in case of average steady state amplification equal to zero at least negative 
initial tendency. 

4.4 System with TV balanced input matrix 

Special case of modulation with time and amplitude shifting is input balanced modulation, 
which can be obtained by modification of B(k) matrix.  

A( ) 0.5,  B( ) 0.5,  C( ) 1
2
k

k k k= = Π − 
 
 

=  (9) 

Corresponding diagrams are plotted on fig. 6. Signal B(k) is symmetrical thus the modulation 
is balanced. Moreover B(k) begins from –0.5, thus system is negative.  
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Figure 6. Bode diagrams, impulse and step responses for system with TV balanced input matrix, period of B(k) 2 
samples (T=0.08 s) and A(k)=0.5. 

Analysis of the responses from fig. 6 follows to following conclusions: 

a) Symmetry in B(k) results in nearly symmetrical phase plot 

b) Negative tendency in impulse and step responses results in 180 deg shift for f nearly zero 

c) Lower power of signal B(k) (2 times less then for examples 4.2-3) results in additive 3 dB 
damping (jointly –6 dB). 

It should be also noted that for balanced modulation the beginning of phase diagrams is 
dependent on time shift of the B(k) signal. 
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Figure 7. Bode diagrams, impulse and step responses for system with TV balanced input matrix period 2 samples 
(T=0.08 s) and A(k)=-0.5. 

Similar analysis can be carried out for the same case with only changed matrix A(k)=-0.5. Fig. 
7 shows diagrams and responses for such system. Bode diagrams are different then for previous case, 
but phase plot still has symmetry (axis of symmetry 360 deg).  

After two-times increased period of B(k) signal, system matrices take the following form. 

A( ) 0.5,  B( ) 0.5,  C( ) 1
4
k

k k k= = Π − 
 
 

=  (10) 

Corresponding diagrams are plotted on fig. 8. Some similarities can be seen on fig. 6, 
especially amplitude diagrams are identical and the phase plot are almost symmetrical. The only 
significant difference is 2 times increased number of transitions on phase diagram. The number is of 
course proportional to the period of B(k) signal. 
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Figure 8. Bode diagrams, impulse and step responses for system with TV balanced input matrix period of B(k) 4 
samples (T=0.16 s) and A(k)=0.5. 

Examples 4.1-4 are concerned on a case when matrix B(k) is time dependent only. In such 
case input signal is modulated and thus is filtered by the dynamics of the system. Although different 
situation take place when matrices C(k) and/or A(k) are time dependent. Time dependent matrix C(k) 
is a particular case when input signal is filtered by system dynamics and then modulated by C(k), 
while varying matrix B(k) modulate input signal before filtering. Some important differences follows 
both in properties of the system and form of the diagrams. 

4.5 System with TV output matrix 

Following model is borrowed from example 4.2 with only changes in matrices B and C. 

A( ) 0.5,  B( ) 1,  C( )
4
k

k k k= = = Π 
 
 

 (11) 
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Corresponding diagrams for horizon N=200 steps are depicted on fig. 9. Comparison to fig. 2 
shows that not only amplitude diagram is drastically changed but also significant changes are visible 
on impulse and step responses of the system. 
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Figure 9. Bode diagrams, impulse and step responses for system with TV output matrix and A(k)=0.5. 

The most important changes on amplitude diagrams in respect to matrices B and C are:  

a) New maximum corresponding to frequency of C(k) equal to 1/(0.04⋅4)=6.25 Hz 

b) Magnitude for f=0 approximately equal to 1 dB - about 2 dB higher damping than for example 
4.2. Such damping is caused by stronger relationship with mean of C(k) than with power of 
B(k). 

The relationship of steady state magnitude with mean of C(k) is not coincidence.  

Similar simulation has been carried out for matrix A(k)=0.9. The results are depicted on fig. 
10. Amplitude plot clearly shows new maximum for f=6.25 Hz. 
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Figure 10. Bode diagrams impulse and step responses for system with TV output matrix and A(k)=0.9. 

4.6 Negative system with TV input-output matrices 

Joining examples 4.2 and 4.5, system matrices take following form 

A( ) 0.5,  B( ) ,  C( )
4 4
k

k k k= = −Π = Π   
   
   

k
 (12) 

Corresponding diagrams are depicted on fig. 11. Such variability of system matrices follows to 
drastic changes on amplitude and phase diagrams. Moreover it can be seen phase shift 180 deg owing 
to negative amplification.  

Diagrams for matrix A(k) equal to -0.5 are depicted on fig. 12. 

Of course for singular case A(k)=0, both Bode diagrams, impulse and step responses are equal 
to zero.  
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Figure 11. Bode diagrams, impulse and step responses for negative TV input-output matrices and A(k)=0.5. 

4.7 System with TV state matrix 

The last example shows third possible case – time varying matrix A(k). It is the more difficult 
to analyse among the three examples considered in the paper. Matrices of the model take following 
form 

A( ) 0.5,  B( ) 1,  C( ) 1
4
k

k k= Π + = = 
 
 

k  (13) 

Corresponding diagrams are depicted on fig. 13 and following properties of them can be 
noted: Level of amplitude plot is raised by unstable part of signal A(k). Starting level for f=0 read off 
from fig. 13 is approximately equal to 18.7 dB. Average amplification read off from step response is 
approximately equal to 9. Due to such observations the values can be recognized as adequate. 
Maximum on amplitude plot corresponds to frequency of A(k) 1/(0.04⋅4)=6.25 Hz. Interesting may be 
comparison between fig. 13 and fig. 10. Amplitude diagrams are similar but the differences can be 
easily seen on phase plot. The phase diagram for system with TV output is monotonic but for system 
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with TV system matrix has 2 clear phase jumps. Also impulse and step responses differ clearly. For 
the case from fig. 13 the responses are close to the system with TV input matrix. 
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Figure 12. Bode diagrams, impulse and step responses for negative TV input-output matrices and A(k)=-0.5. 

5 CONCLUSION 

Dynamical properties of LTV systems can be easily explored using the SVD-DFT based 
method in similar way as using classical Bode diagrams for LTI systems. Four simultaneously 
obtained diagrams for LTV systems allow to carry out complex analysis of LTV systems in a much 
less complicated way than using other known methods, e.g. time-varying transfer function [Kozek, 
1997] or psudomodal parameters [Maia, 1997], [Liu, 1999]. Limited amount of information that can 
be contained into the diagrams causes that some information is neglected. For example for time-
varying input matrix, the variability of the systems does not transfer directly to the frequency diagrams 
but one can observe only the power of the signal controlling changes in  the input matrix. In the case 
of variability in the output or system matrices one can observe the  maximum magnitude for a 
frequency corresponding to the input signal and its harmonics. 
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Figure 13. Bode diagrams determined for system with TV state matrix. 
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