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Abstract: A novel method for norm estimation for dynamical linear time-varying systems is developed. 

The method involves operators description of the system model i.e. transfer operator. The transfer 

operator defined for finite time horizon can be described by finite dimensional matrix whereas for infinite 

time horizon the operator is infinite dimensional. The norm estimate for infinite time horizon is based on 

analysis of a running series of the finite time horizon norm properties.  
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1. INTRODUCTION 

In order to describe the dynamics of time-varying discrete-

time systems, one can employ state space equations with 

time-dependent matrices given by eq. (1)-(2):   

( 1) ( ) ( ) ( ) ( )k k k k k+ = +x A x B v ,                       (1) 

( ) ( ) ( ) ( ) ( )k k k k k= +y C x D v , ( )0 0k =x x  (2) 

where ( ) nk ∈x R  is nominal state, ( ) mk ∈v R  is the nominal 

control, ( ) pk ∈y R  is the nominal output and ( ) n nk ×∈A R , 

( ) n mk ×∈B R , ( ) p nk ×∈C R , ( ) p mk ×∈D R  are system 

matrices, 
0 0 0, 1,...,k k k k N= + +  and N is length of the time 

horizon. For infinite time horizon N = ∞ . 

An LTV system can be equivalently described in terms of 

the matrix operators. There are two different approaches: one 

based on block diagonal operators Khalil (1996) and the other 

based on a lower triangular system matrix Orlowski (2004). 

Both approaches lead to an operator-based description of the 

system and a function which takes the role of a transfer 

function for time-varying systems. This function has many 

properties analogous to those of transfer functions of linear 

time-invariant (LTI) systems. In some cases, this allows one 

to apply to linear time-varying (LTV) systems techniques 

which have formerly been restricted to LTI systems.  

 

Alternatively, the model may be described by means of 

operators. Equations (1)-(2) can be converted into following 

operators form: 

( )0 0
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ= + + = +y CNx CLB D v CNx Tv  (3) 

In order that the system (3) be equivalent to the system (1)-

(2), operators ˆˆ ˆ ˆ ˆ= +T CLB D  and ˆ ˆCN  must be defined in one 

of the two equivalent notations: either an evolutionary one, 

where operators are written by means of sums and products 

Orlowski (2001): 
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where ( ) ( ) ( )1k

i k k iφ = −A A A… , or a matrix-based one, 

where each of the operators can be presented in terms of 

matrices. In order to analyze the stability of the system, one 

has to know operators ˆ ˆ and T N  which can be expressed with 

the help of the following matrix operators: 
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Operator N̂  can be neglected when initial conditions are 

zero. Following sequences: state x̂ , output ŷ  and input v̂  

are constructed from state ( )kx , output ( )ky  and input 

( )kv  signals rewritten in following block column vector 

form: 

 ( ) ( )0 0
ˆ 1

T
T Tk k N = + + x x x⋯  (8) 

 ( ) ( )0 0
ˆ 1

T
T Tk k N = + + y y y⋯  (9) 
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 ( ) ( )0 0
ˆ 1

T
T Tk k N = + + v v v⋯  (10) 

The input/output operator T̂  can be alternatively defined also 

using a set of impulse responses of a time-varying system 

taken at different times, e.g. for SISO system it may be 

written: 
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 (11) 

where 1

0

k

kh  is the response of the system to the Kronecker 

delta ( )0
k kδ −  at time k1 (after k1-k0 samples). In the case of 

a nonzero input-output delay operator, ˆ =D 0  and all 

diagonal entries of T̂  are equal to zero. 

For further considerations in the paper following definitions 

of norms for sequences and operators are used. The norm of a 

sequence in the Hilbert-space is understood as Euclidean 

norm: 

( ) ( )T T

2
ˆ ˆ ˆ ˆ ˆ ˆ,

k

k k= = = =∑v v v v v v v v  (12) 

The ∞ -norm of a sequence in the bounded sequences space 

is understood as: 

 ( )( )ˆ max
k

v k
∞

=v  (13) 

Norms of operators are defined in following way: 

 2

2 ˆ 0
2

ˆ ˆ
ˆ ˆ sup

ˆ≠
= =

v

Tv
T T

v
 (14) 

For systems defined on finite time horizon all operators are 

represented by finite dimensional matrices and signals by 

finite dimensional vectors. Moreover the input-output 

operator is a compact, Hilbert-Schmidt operator from l2 into 

l2 and actually maps bounded signals [ ]2 0 0
,v l k k N∈ = +M �  

into the signals y ∈P .  

2. COMPUTATION THE NORM OF THE TIME-

VARYING SYSTEM 

Stability and performance criteria for analysis and robust 

control design of linear systems, are often expressed by 

norms of appropriately defined transfer functions or transfer 

operators, especially for time varying systems. Norms of the 

linear time-invariant systems defined on infinite time horizon 

can be easily computed using algorithms described in 

Bruisma et al. (1990), Bryson et al. (1975). The algorithms 

are also implemented in Matlab Control Toolbox Trefethen 

(2000). They needs only conversion of the system operator 

into state-space description. Although many methods for 

computing norms for linear time-invariant systems Boyd et 

al. (1990), Bruisma et al. (1990), Genin et al. (2002) which 

are essential in a computer aided control system design Zhou 

et al. (1995) there are very difficult to find methods 

applicable for linear time-varying systems.  

Norm of transfer operator defined on infinite time horizon 

can be computed for periodic linear time-varying systems 

employing lifting technique. The paper (Bittanti et. al. 2000) 

is an overview and comparison of techniques which allows to 

rewrite time-varying systems using time-invariant 

representation with increased but finite dimensions. Norm of 

the transfer operator for such system can be computed in 

similar way as for linear time-invariant systems. More 

description for the lifting technique for periodic time-varying 

systems can be found in Bamieh et. al. (1991), Flamm 

(1991), Laub (1981), Meyer et al. (1975), Varga (1989). 

Nevertheless norm of systems non periodic time varying 

systems cannot be easily computed. In such case the norm of 

transfer operator can be estimated using general operator 

theory Baladi et al. (1995), Descombes et al. (1999), Dewilde 

et al. (1993), Gohberg et al. (1984), Leblond et al. (1998) or 

the technique based on parameterised functional 

minimization. The main idea is based on the following 

general result given inOrlowski et al. (1999). 

2.1. Parameterised functional based norm estimation 

Theorem 1. Let ,  M P  be real Hilbert spaces, 

( )ˆ ,∈T L M P , ˆ ˆ ∈CN P , ( )0,γ ∈ ∞  and ( )ˆJ v  be a 

functional defined on M  and given by 

 
2 22ˆˆ ˆˆ ˆ ˆ( )J γ= + −v Tv CN v

MP

 (15) 

 (a) ˆ γ<T  if and only if there exists β >0, such that 

2 2 22ˆ ˆ ˆ ˆγ β− ≤ −Tv v v
M MP

      ˆ∀ ∈v M  (16) 

Consequently, if ˆ γ<T , then (15) always achieves a unique 

finite maximum overM . 

(b) If ˆ γ>T  then (15) does not achieve a finite maximum 

over M , i.e. ( )
ˆ

ˆsup J
∈

= +∞
v

v
M

. 

It mean that ˆ infγ=T  over all γ such that the maximization 

of (15) has a finite solution. The required value of γ can be 

found with arbitrary accuracy, e.g. by means of the bisection 

method. Equivalence between the maximization of the 

functional (15) and the existence of a solution to the 

corresponding Riccati difference equations can be exploited.  



 

 

     

 

Estimation of the operator norm using the method of 

parameterised functional minimization in general can takes 

large computational power. 

 

2.2. Running finite time horizon based norm estimation 

In order to make computationally efficient norm estimation, 

following approach based of finite-time horizon norm is 

proposed. 

Definition 1. Amplification energy factor ke for system with 

zero initial condition x0=0 is given in following way 
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For systems unstable in the input-output sense output energy 

grows unboundedly for bounded input signals, i.e. 

( )
ˆ 0

sup ek
≠

= ∞
v

. It implies infinite value of the norm of transfer 

operator, i.e. 

 ( )
ˆ 0

ˆ sup ek
≠

=
v

T  (18) 

where the norm ˆ → ∞T .  

For systems stable in the input-output sense output energy is 

bonded for bounded input signals, i.e. 0 ek≤ < ∞ . It implies 

finite value of the norm of transfer operator T̂ .  

Let us assume that a system defined on infinite time horizon 

will be considered as a system defined on finite time horizon 

with length N. The norm of transfer operator of the system 

defined on finite time horizon N be denoted in following 

way: 

 [ ]
ˆ

N
T  (19) 

where 

 [ ] [ ]1
ˆ ˆ  

N N
N

−∈
∀ ≤T T
Z

 (20) 

If the norm of transfer operator defined on infinite time 

horizon is finite ˆ c=T  then there exist a limit c such that: 

 [ ]
ˆlim

N
N

c
→∞

=T  (21) 

Thus for large enough lengths of the time horizon it may be 

concluded that finite time horizon norm is an approximation 

of the infinite time horizon norm, i.e.: 

 [ ]
0

ˆ ˆ
N

N N≥
∀ ≅T T  (22) 

Relative approximation error can be expressed by following 

equation: 

 ( ) [ ]
ˆ

ˆ , 1
ˆ

N

Nδ = −
T

T
T

 (23) 

Although it is impossible to find simple relation between the 

relative error δ  and the length of the time horizon N for 

general time-varying system T̂ , we show that the method is 

relatively simple and efficient for discrete-time, time-varying 

systems norm estimation. 

 

3. NUMERICAL ANALYSIS FOR PERIODIC TIME-

VARYING SYSTEM 

The system under consideration is special case of the linear 

time-varying system whereas A(k) is the time-varying system 

matrix with invariant eigenvalues. The system is 

characterized by constant (time-invariant) eigenvalues of the 

system matrix despite changes in its entries. This idea is 

borrowed from De La Sen (2002), Khalil (1996). The 

additional parameter ε allows changes of the system with a 

degree of non-stationarity as well as the pole location. 

Eigenvalues of matrix A(k) are inside the unitary circle, but 

can be either stable or unstable with respect to switching in 

the structure of the system. The deciding factor is the 

switching interval defined by the parameter ε. System 

matrices (1)-(2) are the following: 

( )k κ=A A ,  [ ]T
( ) 1 0k =B ,  [ ]( ) 0 1k =C ,  ( ) 0k =D  (24) 

where  

 

0 1 2

3

2 1.2 1 2 1 1.2
,  ,  ,  

2 1 1.2 2 2 2

2 2
,  =floor rem ,4

1.2 1

k
κ

ε

− − −     
= = =     − − −     

−    =    −    

A A A

A

  (25) 

Variable κ denotes rounding towards negative infinity (floor) 

of the remanent (signed remainder of k/ε after division by 4). 

Eigenvalues of the matrix A(k) are independent of the 

parameter ε and equal to 0.5 0.3873i±  for all k. 

 

In fact value of the parameter ε significantly changes 

properties of the system. Small values ε<2.8 implies unstable 

character of the system whereas large values results in stable, 

switching system. Figure 1 shows values of the transfer 

operator norm [ ]
ˆ

N
T  vs. length of the time horizon N for 

5ε = . Value estimated using lifting techniques is equal to 

ˆ 12.9849=T  and depicted by dotted line. As can be seen 



 

 

     

 

from fig. 1 estimated norm fast reach neighbourhood of the 

real value. It takes only about 27 time steps.  

 

Figure 1. Norm of transfer operator for finite time horizon 

discrete switching system (24)-(25) with 5ε =  vs. the 

length of the time horizon N.  

Relative error for the same system computed for the length of 

the time horizons up to 500 is depicted in fig. 2. From 

practical point of view relative error for norm estimation 

below 210−  is in most cases sufficient, in this case it takes 

only 27 time steps what is relatively fast, even for second 

order system but with variability period of 4 20ε =  time 

steps. 

 

 

Figure 2. Relative error of the transfer operator norm 

computed on finite time horizon for discrete switching 

system (24)-(25) with 5ε =  vs. the length of the time 

horizon N.  

 

4. CONCLUSION 

In the paper a novel approach for the estimation of the 

operator norm is proposed. Particularly infinite dimensional 

transfer operator norm of dynamical discrete-time, periodical 

time-varying stable systems can be estimated using block 

matrix operator notation for transfer operator defined on 

finite time horizon. The minimal length of the time horizon 

required for computations is dependent both on the dominant 

time constant of the system and the variability period of the 

system matrices.  

Open problems are connected mostly with estimating the 

minimal length of the time horizon required for 

computations. Further investigations should concern 

extending the method for wider class of the time-varying 

systems e.g. for other common classes, i.e. almost periodic 

systems etc. 
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