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Preface

Differential equations first came into existence with the invention of calculus
in seventeenth century by I. Newton and G. W. Leibniz. Then, this theory
was investigated by J. Bernoulli, J. Riccati, A. Clairaut, J.-B. R. d’Alembert,
L. Euler, D. Bernoulli, and J.-L. Lagrange. In the early stages of development,
differential equations were mainly used to describe physical phenomena such
as string vibration or heat flow. Nowadays, the theory of differential equations
is widely used not only in mathematics but also in related fields such as
physics (e.g. Schrödinger equation) or chemistry (e.g. reaction rates), and
even unrelated fields such as biology (e.g. Lotka-Volterra model), economics
(e.g. dynamics of gross domestic product) or medicine (e.g. SIR model used in
mathematical modeling of infectious diseases). That is why its development
is so important for all science.

There are several types of classification of differential equations. The most
common divisions in the literature are based on a distinction whether the
equation is ordinary or partial, linear or nonlinear, homogeneous or nonho-
mogeneous. We will briefly discuss the first division. An ordinary differential
equation is an equation involving an unknown function of one independent
variable and its derivatives. They are used to describe objects in which the
state is an element of the finite-dimensional space. Their theory is well known,
in most cases their solutions can be expressed in terms of integrals. A partial
differential equation is an equation involving an unknown function of two
or more independent variables and certain of its partial derivatives. They
are widely used to describe phenomena in nature such as sound, vibrations
or fluid flow. In this case, the state is described by a function, that is, an
element of an infinite-dimensional space. As opposed to ordinary differential
equations, in most cases it is rather impossible to write an exact solution of a
partial differential equation. In this case, we can try to estimate the behavior
of the solutions. Such problems are part of an emerging field of mathematics,
namely the mathematical control theory. The mathematical control theory
is an area of mathematics dealing with the analysis and modeling of objects
and processes, treated as dynamical systems with control. Thanks to it, we
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can study such properties of those systems as stability (small perturbations
of initial conditions lead to small perturbations of solutions), controllability
(the existence of input that carries out the system in a finite period of time
to a given state under the fulfillment of initial conditions) or observability
(one can determine the behavior of the entire system from the knowledge of
the system’s outputs).

The following dissertation is devoted to the analysis of stability and ob-
servability of a particular model of vibrations in beams, the so-called Timo-
shenko beam model. This model is described by a set of linear partial differ-
ential equations.

Analysis of stability of complex systems described by partial differential
equations is an important problem of mathematical control theory. Every
complex physical system is composed of simple components, e.g. beams or
plates. Thus, the stability of beams has been the subject of several investiga-
tion during the last two decades. The majority of publications concentrated
on Euler-Bernoulli beam model, e.g. [7, 9, 38, 62]. Various stability problems
were in the scope of considerations in those papers. The problem of two
identical Euler-Bernoulli beams coupled end to end via an energy-dissipating
joint was considered in [7]. R. Curtain and K. Morris proved L2-stability of
the system after including damping operator in a clamped-free Euler beam
with shear force control model in [9]. J. Valverde and D. Garćia-Vallejo [62]
observed additional effects of Coriolis forces, and they investigated their in-
fluence on stability of the beam rotating with a critical angular velocity. The
stability analysis of a system composed of rotating beams on a flexible, cir-
cular fixed ring, using Routh-Hurwitz criterion is presented by N. Lesaffre,
J.-J. Sinou and F. Thouverez [38].

Timoshenko beam model is a generalization of Euler beam model, taking
into account additional rotation of a cross-section area. Again, many authors
considered different stability aspects for this generalized object. J. U. Kim
and Y. Renardy [27] showed that the Timoshenko beam can be uniformly sta-
bilized by means of a boundary control. A. Manevich and Z. Kołakowski [41]
studied the dynamics of Timoshenko beam made of a viscoelastic material.
A. Zuyev and O. Sawodny [74] consider stabilizing observer of a system de-
scribing the motion of a flexible-link manipulator with a payload under the
action of gravity. M. I. Mustafa and S. A. Messaoudi [42] considered a Timo-
shenko system with viscoelastic boundary conditions localized on a part of the
boundary. A. Guesmia and S. A. Messaoudi [18] considered a one-dimension
Timoshenko system with different speeds of wave propagation and with only
one control given by a viscoelastic term on the angular rotation equation. Z.
J. Han and G. Q. Xu [22] studied the stabilization problem and Riesz basis
property of two serially connected Timoshenko beams. M. Gugat [19] studied
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the problem to move the beam from a given initial state to a position of rest,
where the movement is controlled by the angular acceleration of the axis to
which the beam is clamped.

Many authors studied the problem of a damping in dynamical systems.
M. A. Shubov in [50] developed spectral and asymptotic analysis for a class
of non-self-adjoint operators which are the dynamics generators for the sys-
tems governed by the equations of the spatially nonhomogeneous Timoshenko
beam model with a 2-parameter family of dissipative boundary conditions.
In [69], G. Q. Xu and S. P. Yung studied the exponential decay rate of a
Timoshenko beam system with boundary damping. J. E. M. Rivera and A.
I. Ávila [46] considered the uniform stabilization of a hybrid elastic model
consisting of a Timoshenko beam and a tip load at the free end of the beam.
W. He and S. S. Ge presented the modeling and vibration control problem
of a satellite with two flexible solar panels in [23]. In [24] the same authors
considered the vibration control design for an Euler-Bernoulli beam with
the boundary output constraint. M. Bassam, D. Mercier, S. Nicaise and A.
Wehbe in [4] studied the indirect boundary stabilization of the Timoshenko
system with only one dissipation law.

More complicated models, including not only vibrations of the beam,
were also studied in last decades. Since 1999 W. Krabs and G. M. Sklyar
considered different controllability and stabilizability aspects of a special,
undamped model of a rotating Timoshenko beam clamped to the motor disk
in [32–35]. In [32], the problem of transferring the beam from a position of
rest into another given position of rest within a given time was solved. They
showed in [33], how to choose a feedback control allowing to stabilize the
system in a preassigned position of a rest. W. Krabs, G. M. Sklyar and J.
Woźniak obtained conditions of exact controllability under the assumption
that the physical parameter γ appearing in the model equation is rational
in [35].

Here two main problems are investigated. Firstly, stability of a particular
model of vibrations of Timoshenko beams with a weak (distributed) damping
connected to rotations of cross-sections of the beam, of deflections of the cen-
ter line of the beam, and of both is analyzed. In one of the cases considered,
for some values of physical parameters of the beam the optimal stability mar-
gin phenomenon may be observed, which means that under some conditions
there exists an optimal value of a damping coefficient, that is a coefficient
that guarantees the fastest possible decay of norms of solutions of the system.
Secondly, exact observability problem of vibration of undamped Timoshenko
beam is studied.

Controllability, its dual notion of observability, and related problems were
widely investigated in last few decades. The cases of approximate and spectral
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controllability and the corresponding dual notions of observability were one
of main directions (see the book by D. Salamon [48] and references therein).
B. Jacob and H. Zwart in [26] showed that infinite-dimensional version of the
Hautus test is sufficient for exact observability of certain exponentially sta-
ble systems generated by C0-group. They also proved that this Hautus test
is in general not sufficent for approximate observability of strongly stable
systems even if the system is modeled by a contraction semigroup and the
observation operator is bounded. T. Duyckaerts, X. Zhang and E. Zuazua
in [11] proved the optimality of the observability inequality for parabolic sys-
tems with potentials in even space dimensions n ≥ 2. G. O. Antunes, F.
D. Araruna and A. Mercado [1] considered the dynamical one-dimensional
Mindlin-Timoshenko system for beams. They obtained a global exact control-
lability result for this semilinear system with superlinear nonlinearities. For
this purpose, they established an observability estimate for the linearized sys-
tem with bounded potentials. Moreover, they obtained an explicit estimate of
the observability constant in terms of the norms of potentials. A. Sengouga
in [49] studied the wave equation in an interval with two linearly moving
endpoints and establishes observability results, at one or at both endpoints,
in a sharp time. J. H. Chen [8] considered infinite-time exact observability of
Volterra systems in Hilbert spaces. He established sufficient conditions un-
der which infinite-time exact observability of a Volterra system follows from
that of the corresponding Cauchy system without convolution term. B. H.
Haak and D.-T. Hoang in [20] investigated admissibility and exact observ-
ability estimates of boundary observation and interior point observation of
a 1-dimensional wave equation on a time-dependent domain for sufficiently
regular boundary functions. They also discussed moving observers inside the
noncylindrical domain and simultaneous observability results. S. Cai and M.
Xiao [6] studied the boundary observability for one-dimensional wave equa-
tion associated with nonlinear boundary condition that can generate complex
dynamics. They discussed the exact observability and approximate observ-
ability, respectively, in terms of three different types of common boundary
observations by studying the wave interactions on the boundary directly. W.
Zhang, W. X. Zheng and B.-S. Chen [73] studied detectability, observabil-
ity and related Lyapunov-type theorems of linear discrete-time time-varying
stochastic systems with multiplicative noise.

Before proceeding with observability considerations for Timoshenko beam
model, some important general observability results are proven. Those con-
clusions can be used in many practical systems and devices in various domains
of science and technology (e.g. observability of vibrational processes in au-
tomation and robotics). As an example of the practical use of the obtained
results, the problem of exact observability of vibrating Timoshenko beam
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model is considered. As opposed to string and Euler-Bernoulli beam models,
the eigensystem of this model is not a Riesz basis, only the system with di-
vided differences forms Riesz basis for a sufficiently large time T [32]. From
the mathematical point of view the problems can be reduced to solvability of
certain trigonometric non-Fourier moment problems with two asymptotically
close families of exponentials. Conditions for solvability of those problems
were first proposed in terms of convergence of series of divided differences of
moments by D. Ullrich [61]. It turned out that in some situations the condi-
tions of convergence can be understood as a kind of smoothness of projections
of end-states of the system to some special subspaces [53].

The dissertation is divided into a preface and four chapters.
In the first chapter, we discuss the elements of classical operator theory

which are important later in the work. At the beginning we focus on linear
operators. Then we introduce strongly continuous groups and semigroups
associated with operators of the differential equations. Next, we extend the
concept of eigenvalues and eigenvectors in infinite-dimensional spaces, i.e.
we present basics of spectral theory. At the end, we state theorems about
generating strongly continuous groups and semigroups and we present basic
definitions and properties of Riesz basis and Riesz-spectral operators.

The second chapter is devoted to introducing differential equations de-
scribing the vibrations of Timoshenko beam models considered in the follow-
ing chapters.

In the third chapter, we analyze stability of Timoshenko beam model
including damping effects. To this end, we carry out spectral analysis of the
operators associated with differential equations describing the system under
consideration. Then we prove that in some particular cases those operators
satisfy spectrum determined growth condition, which means that the location
of the spectrum allows us to determine the stability margin of the system.
Furthermore, we investigate the existence of an optimal decay rate. At the
end we compare the obtained results with other damping operators.

In the fourth chapter, we consider the problem of exact observability of
a general class of distributed parameter systems in Hilbert spaces. We prove
that the system with some specific assumptions on spectrum and eigensystem
is not exactly observable in default topology setting. Then we find stronger
topology for state observation for which the system becomes exactly ob-
servable. In the end, we show that clamped-free Timoshenko beam system
satisfies obtained results.

7



Contents

1 Elements of Classical Operator Theory 10
1.1 Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Strongly Continuous Groups and Semigroups . . . . . . . . . . 18
1.3 Spectral Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Generation Theorems . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Riesz Basis and Riesz-spectral Operators . . . . . . . . . . . . 25

2 Timoshenko Beam Theory 29
2.1 Modeling Rotating Timoshenko Beam . . . . . . . . . . . . . . 30
2.2 Operator Equation of Undamped Beam . . . . . . . . . . . . . 36
2.3 Operator Equation of Damped Beam . . . . . . . . . . . . . . 38
2.4 Cantilever Beam Model . . . . . . . . . . . . . . . . . . . . . . 39

3 Stability Analysis 41
3.1 Various Concepts of Stability . . . . . . . . . . . . . . . . . . 41
3.2 Results for Undamped Beam Model . . . . . . . . . . . . . . . 43
3.3 Spectral Properties of the Operator of Damped Beam . . . . . 46
3.4 Asymptotic Stability of the System . . . . . . . . . . . . . . . 50
3.5 General Form of a Spectral Equation . . . . . . . . . . . . . . 51
3.6 Approximations of a Spectral Equation . . . . . . . . . . . . . 54
3.7 Optimal Decay Rate Analysis . . . . . . . . . . . . . . . . . . 65
3.8 Comparison with Other Damping Systems . . . . . . . . . . . 71

4 Observability Analysis 73
4.1 Various Concepts of Observablity . . . . . . . . . . . . . . . . 73
4.2 Exact Observability Conditions . . . . . . . . . . . . . . . . . 76
4.3 Observablitity of a Timoshenko Beam . . . . . . . . . . . . . . 83

Bibliography 87

Index 94

8



Dissertation summary 95

Streszczenie rozprawy 96

9



Chapter 1

Elements of Classical Operator
Theory

This chapter is devoted to introduce basic definitions and theorems which
are necessary in the main part of the dissertation. We start with a general
theory of linear operators. Next, we discuss the properties of strongly contin-
uous groups and semigroups and their association with differential equations.
Then, we introduce spectral theory and generation theorems. At the end of
this chapter we formulate some results on Riesz bases and define an impor-
tant class of operators, i.e. Riesz spectral-operators.

The results discussed here are well known in functional analysis and may
be found in books on this subject or monographs in control theory. Contents
of this chapter are based on the following references: [10] for Linear Operators,
[10,14,72] for Strongly Continuous Groups and Semigroups, [10,14] for Spec-
tral Theory, [10,14,39,43,72] for Generation Theorems and [10,16,61,70,75]
for Riesz Basis and Riesz-spectral Operators.

1.1 Linear Operators

In this section we focus on transformation T from one normed linear space
X to another Y . We assume that X and Y will be either Banach or Hilbert
spaces. Later in this section we discuss basic properties of linear operators.

At the beginning, we start with the definition of a linear operator.

Definition 1.1. A linear operator , or simply an operator, T from linear space
X to a linear space Y over the same field F is a map T : D(T ) ⊂ X → Y ,
such that D(T ) is a subspace of X, and for all x1, x2 ∈ D(t) and scalars α,
it holds that:
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i) T (x1 + x2) = T (x1) + T (x2),

ii) T (αx) = αT (x).

The set D(T ) in above definition is called the domain of the operator T .
Importantly, the same mapping defined in different domains gives us different
operators. For example, consider the operator T1 : D(T1)→ L2(0, 1) defined
by T1x = 2x with the domain D(T1) = {x ∈ L2(0, 1) | x continuous} and
the operator T2 : D(T2) → L2(0, 1) defined by T2x = 2x with the domain
D(T2) = L2(0, 1). Naturally, the operator T1 differs from the operator T2.

Definition 1.2. The set of all possible images of the operator T : D(T )→ Y
is a subspace of Y , in general. It is called the range of T and we denote this
by ranT . If the range of an operator is finite-dimensional, then we say that
the operator has finite rank .

Now we turn to the inverse operators.

Definition 1.3. An operator T : D(T ) ⊂ X → Y between two linear spaces
X and Y is invertible if there exists a map S : D(S) := ranT ⊂ Y → X
such that:

i) STx = x, x ∈ D(T ),

ii) TSy = y, y ∈ ranT .

S is called the algebraic inverse of T and we write T−1 = S.

Lemma 1.4 (see [10]). Linear operators T from X to Y , where X and Y
are linear vector spaces, have the following properties:

a) T is invertible if and only if T is injective, that is, Tx = 0 implies
x = 0.

b) If T is an operator and it is invertible, then its algebraic inverse is also
linear.

The set of all elements in the domain of T such that Tx = 0 is called the
kernel of T and is denoted by kerT . If T is a linear operator, then kerT is
a linear subspace. From the above lemma we see that the linear operator T
has an inverse if kerT = {0}.

Now we proceed with notions of continuous and bounded operators.

Definition 1.5. A map F : D(F ) ⊂ X → Y between two normed linear
spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) is said to be continuous at x0 ∈ X if,
given ε > 0, there exists a δ > 0 such that ‖F (x) − F (x0)‖Y < ε, whenever
‖x− x0‖X < δ. F is continuous on D(F ) if it is continuous at every point in
D(F ).
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Definition 1.6. Let T be a linear operator from D(T ) ⊂ X → Y , where
X and Y are normed linear spaces. T is a bounded linear operator or T is
bounded if there exists a real number c such that for all x ∈ D(T )

‖Tx‖Y ≤ c‖x‖X .

Definition 1.7. Let T be a bounded linear operator from D(T ) ⊂ X to Y .
We define its norm, ‖T‖, by

‖T‖ = sup
x∈D(T )
x 6=0

‖Tx‖Y
‖x‖X

.

An equivalent definition of ‖T‖ is

‖T‖ = sup
x∈D(T )
‖x‖X=1

‖Tx‖Y .

The relation between continuous and bounded linear operators are given
in the following theorem.

Theorem 1.8 (see [10]). If T : D(T ) ⊂ X → Y is a linear operator, where
X and Y are normed linear spaces, then:

a) T is continuous if and only if T is bounded.

b) If T is continuous at a single point, it is continuous on D(T ).

Now we define a space of bounded linear operators.

Definition 1.9. If X and Y are normed linear spaces, we define the normed
linear space L(X, Y ) to be the space of bounded linear operators from X to
Y with D(T ) = X and with norm given by Definition 1.7.

For the special case that X = Y we denote L(X,X) by L(X).

Lemma 1.10 (see [10]). Let L(X, Y ) denote the space of bounded linear
operators from X to Y . Then the following properties hold:

a) If Y is a Banach space, then so is L(X, Y ).

b) If X, Y and Z are normed linear spaces, T1 ∈ L(X, Y ) and T2 ∈
L(Y, Z), then T3, defined by T3x = T2(T1x), is an element of L(X,Z)
and ‖T3‖ ≤ ‖T1‖‖T2‖.
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c) L(X) is an algebra; that is αT1, T1+T2 and T1T2 are in L(X) for every
T1, T2 in L(X); furthermore, ‖T1T2‖ ≤ ‖T1‖‖T2‖.

The concept of convergence in the space of the bounded linear operators
is as follows.

Definition 1.11. Let {Tn, n ≥ 1} be a sequence of bounded linear operators
in L(X, Y ), where X and Y are normed linear spaces, then

i) Tn converges uniformly to T , if

‖Tn − T‖L(X,Y ) → 0 as n→∞,

ii) Tn converges strongly to T , if

‖Tnx− Tx‖Y → 0 as n→∞ for all x ∈ X.

In the case of the bounded linear operators dependent on a parameter
t, where t is from some interval in R, we can define strong and uniform
continuity with respect to t in an analogous manner.

Definition 1.12. If T (t) is in L(X, Y ) for every t ∈ [a, b], where X and Y
are normed linear spaces, then

i) T (t) is uniformly continuous at t0, if

‖T (t)− T (t0)‖L(X,Y ) → 0 as t→ t0,

ii) T (t) is strongly continuous at t0, if

‖T (t)x− T (t0)x‖Y → 0 for all x ∈ X as t→ t0.

Another subclass of bounded linear operators with useful properties are
compact operators.

Definition 1.13. Let X and Y be normed linear spaces. An operator T ∈
L(X, Y ) is said to be a compact operator if T maps bounded sets of X onto
relatively compact sets of Y . An equivalent definition is that T is linear and
for any bounded sequence {xn} in X, {Txn} has a convergent subsequence
in Y .

Some properties of compact operators are summarized in the following
lemma.
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Lemma 1.14 (see [10]). Let X and Y be normed linear spaces and let T :
X → Y be a linear operator. Then the following assertions hold:

a) If T is bounded and dim(T (X)) <∞, then the operator T is compact.

b) If dim(X) <∞, then the operator T is compact.

c) The range of T is separable if T is compact.

d) If S, U are elements of L(X1, X) and L(Y, Y1), respectively, and T ∈
L(X, Y ) is compact, then so is UTS.

e) If {Tn} is a sequence of compact operators from X to the Banach space
Y , that converge uniformly to T , then T is a compact operator.

f) The identity operator, I, on the Banach space X is compact if and only
if dim(X) <∞.

g) If T is a compact operator in L(X, Y ) whose range is a closed subspace
of Y , then the range of T is finite-dimensional.

Integral operators are an important example of compact operators on the
space L2(a, b).

Theorem 1.15 (see [10]). Let k(t, s) be an element of L2([a, b]× [a, b]). Then
the operator K from L2(a, b) to L2(a, b) defined by

(Ku)(t) =
b∫
a

k(t, s)u(s)ds

is a compact operator.

In this section we considered mainly on bounded linear operators. How-
ever, in applications we will often find unbounded linear operators.

Definition 1.16. Let X and Y be normed linear spaces and T : D(T ) ⊂
X → Y a linear operator. The graph G(T ) is the set

G(T ) = {(x, Tx) | x ∈ D(T )}

in the product space X × Y .

Definition 1.17. A linear operator T is said to be closed if its graph G(T )
is a closed linear subspace of X × Y . Alternatively, T is closed if whenever

xn ∈ D(T ), n ∈ N and lim
n→∞

xn = x, lim
n→∞

Txn = y,

it follows that x ∈ D(T ) and Tx = y.
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It is rather difficult to prove from the above definition that the operator
is closed. The next theorem gives us a criterion for checking the closedness
of the operators.

Theorem 1.18 (see [10]). Assume that X and Y are Banach spaces and let
T be a linear operator with domain D(T ) ⊂ X and range Y . If, in addition,
T is invertible with T−1 ∈ L(Y,X) then T is a closed linear operator.

Similarly to the above theorem, we can introduce a condition for check
the boundedness of the linear operators.

Theorem 1.19 (Closed Graph Theorem, see [10]). A closed linear oper-
ator defined on all of a Banach space X into a Banach space Y is bounded.

A Hilbert space is a special case of a Banach space with a norm induced
by an inner product. Thus, all the properties discussed previously in this
section are true also for the Hilbert space. However, a Hilbert space gives us
additional properties of the operators which we briefly discuss below.

Theorem 1.20 (Riesz Representation Theorem, see [10]). If H is a
Hilbert space, then every element h in H induces a bounded linear functional
f defined by

f(x) = 〈x, h〉H .

On the other hand, for every bounded linear functional f on H, there exists
a unique vector h0 ∈ H such that

f(x) = 〈x, h0〉H for all x ∈ H,

and furthermore, ‖f‖ = ‖h0‖.

Note that the last equality the norm on the left-hand side is the norm in
the space of linear functionals, and the norm on the right-hand side is the
norm in the vector space H. The consequence of the Riesz Representation
Theorem is the existence of the adjoint operator.

Definition 1.21. Let T ∈ L(H1, H2), where H1 and H2 are Hilbert spaces.
Then there exists a unique operator T ∗ ∈ L(H2, H1) that satisfies

〈Tx1.x2〉H2 = 〈x1, T ∗x2〉H1 for all x1 ∈ H1, x2 ∈ H2.

The operator T ∗ is called the adjoint operator of T .

Some properties of adjoint operators are given in the following lemma.
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Lemma 1.22 (see [10]). Let T1, T2 ∈ L(H1, H2) and S ∈ L(H2, H3), where
H1, H2 and H3 are Hilbert spaces. The adjoint has the following properties:

a) I∗ = I.

b) (αT1)∗ = αT ∗1 .

c) ‖T ∗1 ‖ = ‖T1‖.

d) (T1 + T2)∗ = T ∗1 + T ∗2 .

e) (ST1)∗ = T ∗1S
∗.

f) ‖T ∗1 T1‖ = ‖T1‖2.

We can also define the adjoint of an unbounded linear operator.

Definition 1.23. Let A be a linear operator on a Hilbert space H. Assume
that the domain of A, D(A), is dense in H. Then the adjoint operator A∗ :
D(A∗) ⊂ H → H of A is defined as follows. The domain D(A∗) of A∗ consists
of all y ∈ H such that there exists a y∗ ∈ H satisfying

〈Ax, y〉 = 〈x, y∗〉 for all x ∈ D(A).

For each such y ∈ D(A∗) the adjoint operator A∗ is then defined in terms of
y∗ by

A∗y = y∗.

It can be shown that if A is a closed, densely defined operator, then D(A∗)
is dense in H and A∗ is closed. In the following lemma, we have some results
for adjoint operators.

Lemma 1.24 (see [10]). Let A be an arbitrary, densely defined operator and
let T be a bounded linear operator defined on the whole of the Hilbert space
H. The following holds:

a) (αA)∗ = αA∗, D((αA)∗) = D(A∗) if α 6= 0 and H if α = 0.

b) (A+ T )∗ = A∗ + T ∗, with domain D((A+ T )∗) = D(A∗).

c) If A has a bounded inverse, i.e., there exists an A−1 ∈ L(H) such that
AA−1 = IH , A−1A = ID(A), then A∗ also has a bounded inverse and
(A∗)−1 = (A−1)∗.

Now we define a special class of operators.
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Definition 1.25. We say that a densely defined, linear operator A is sym-
metric if for all x, y ∈ D(A)

〈Ax, y〉 = 〈x,Ay〉.

A symmetric operator is self-adjoint if D(A∗) = D(A).

For a self-adjoint operator A, we have that 〈Ax, x〉 = 〈x,Ax〉, which
means that 〈Ax, x〉 is real for all x ∈ D(A). If this value is additionally
nonnegative, we can introduce special name of these operators.

Definition 1.26. A self-adjoint operator A on the Hilbert space H is non-
negative if

〈Ax, x〉 ≥ 0 for all x ∈ D(A),

A is positive if
〈Ax, x〉 > 0 for all nonzero x ∈ D(A),

and A is coercive if there exists and ε > 0 such that

〈Ax, x〉 ≥ ε‖x‖2 for all x ∈ D(A).

We shall use the notation A ≥ 0 for nonnegativity of the self-adjoint operator
A, and A > 0 for positivity. Furthermore, if T, S are self-adjoint operators in
L(H), then we shall write T ≥ S for T − S ≥ 0.

For self-adjoint and nonegative operator we are able to find square root.

Lemma 1.27 (see [10]). If A is self-adjoint and nonnegative, then A has a
unique nonnegative square root A

1
2 , so that D

(
A
1
2

)
⊃ D(A), A

1
2x ∈ D

(
A
1
2

)
for all x ∈ D(A), and A

1
2A

1
2x = Ax for x ∈ D(A). Furthermore, if A is

positive, then A
1
2 is positive too.

Another important class of operators are skew-adjoint operators.

Definition 1.28. Operator A is a skew-adjoint operator, if D(A∗) = D(A)
and A∗ = −A.

Analogously to self-adjoint operators, for every skew-adjoint operator A
the range of 〈Ax, x〉 is purely imaginary.
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1.2 Strongly Continuous Groups and Semi-
groups

The ordinary differential equations of the form

ż(t) = Az(t) +Bu(t), z(0) = z0, t ≥ 0,

are often used to describe control systems with a finite-dimensional state
space. The solutions of these equations are given by the formula

z(t) = T (t)z0 +
t∫
0

T (t− s)Bu(s)ds, t ≥ 0, (1.1)

where
T (t) = eAt, t ≥ 0,

is a solution of the equation

ϕ̇(t) = Aϕ(t), ϕ(0) = I.

Note that (1.1) is a well defined integral in the sense of Bochner (see [10]).
However, there exist a large number of systems which cannot be repre-

sented by a finite number of parameters. Examples of such systems are string
vibrations or heat flow in a rod. To describe their state, we will use a function
that is an element of an infinite-dimensional function space. Control theory
of infinite dimensional systems becomes significantly complicated. The sit-
uation is similar to passing from ordinary to partial differential equations.
This motivates the necessity for generalizing the concept of a fundamental
solution and introducing semigroup theory.

Let H be a separable complex Hilbert space. Here and below R+ will
denote the set of nonnegative real numbers.

Definition 1.29. A strongly continuous semigroup (or C0-semigroup) is an
operator-valued function T (t) from R+ to L(H) that satisfies the following
properties:

i) T (t+ s) = T (t)T (s) for all t, s ≥ 0,

ii) T (0) = I,

iii) ‖T (t)x− x‖ → 0 as t→ 0+ ∀x ∈ H.

Remark 1.30. If these properties hold for R instead of R+, we call T (t) a
strongly continuous group (or C0-group) on H.
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In the work we will write alternatively a strongly continuous semigroup,
C0-semigroup or even semigroup. The following theorem gives us some basic
properties of semigroups.

Theorem 1.31 (see [10]). A strongly continuous semigroup T (t) on a Hilbert
space H has the following properties:

a) ‖T (t)‖ is bounded on every finite subinterval of [0,∞),

b) T (t) is strongly continuous for all t ∈ [0,∞),

c) For all x ∈ H we have that
1
t

t∫
0

T (s)xds→ x as t→ 0+,

d) If ω0(T ) := inf
t>0

(
1
t

log ‖T (t)‖
)
, then ω0(T ) = lim

t→∞

(
1
t

log ‖T (t)‖
)
<∞,

e) ∀ω > ω0(T ) there exists a constant Mω such that ∀t ≥ 0,

‖T (t)‖ ≤Mωe
ωt. (1.2)

Definition 1.32. The constant ω0(T ) defined in the above theorem is called
growth bound of the semigroup. If this does not lead to a misunderstanding,
we will write shortly ω0 instead of ω0(T ). Moreover, a semigroup is called
bounded if for ω = 0 and some M0 in inequality (1.2) is fulfilled, and con-
tractive if for ω0 = 0 and M0 = 1 in inequality (1.2) is valid.

In the case of a finite-dimensional space, the operator A is connected with
the fundamental solution eAt by(

d

dt
eAt
)∣∣∣∣∣

t=0

= A.

Now we associate in a similar way an unbounded operator A to a C0-semi-
group T (t).

Definition 1.33. The infinitesimal generator A of a C0-semigroup on a
Hilbert space H is defined by

Ax = lim
t→0+

1
t
(T (t)− I)x, (1.3)

whenever the limit exists; the domain of A, D(A), being the set of elements
in H for which the limit exists.
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Remark 1.34. A is the infinitesimal generator of a C0-group if t in limit in
(1.3) tends to 0 instead of 0+.

Example 1.35. Let A be a n× n real or complex matrix. Then, the family

T (t) = eAt =
∞∑
k=0

(At)k

k!
(1.4)

is a semigroup with generator A. Formula (1.4) is also true if we assume that
A is a bounded linear operator on H.

In general the above definition allows us to calculate the generator of a
C0-semigroup, but it is rather difficult to apply. Some basic properties of a
generator of a C0-semigroup are given in the following theorem.

Theorem 1.36 (see [10]). Let T (t) be a strongly continuous semigroup on a
Hilbert space H with infinitesimal generator A. Then the following hold:

a) For x ∈ D(A), T (t)x ∈ D(A) ∀t ≥ 0,

b) d
dt

(T (t)x) = AT (t)x = T (t)Ax for x ∈ D(A), t > 0,

c) dn

dtn
(T (t)x) = AnT (t)x = T (t)Anx for x ∈ D(An), t > 0,

d) T (t)x− x =
t∫
0

T (s)Axds for x ∈ D(A),

e)
t∫
0

T (s)xds ∈ D(A) and A

t∫
0

T (s)xds = T (t)x − x for all x ∈ H, and

D(A) is dense in H,

f) A is a closed linear operator,

g)
∞⋂
n=1

D(An) is dense in H.

1.3 Spectral Theory

Spectral theory deals with the generalization of the notion of eigenvalues and
eigenvectors in infinite dimensional spaces. For this purpose, we will consider
abstract equation of the form

(λI − A)x = y,
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where A is a closed linear operator on a complex Banach space X with
D(A) ⊂ X, x, y ∈ X, and λ ∈ C. Our main task is asking under what
conditions (λI − A) has a bounded inverse on the particular Banach space
X.

We begin our considerations with the introduction of a resolvent set.

Definition 1.37. Let A be a closed linear operator on a (complex) normed
linear space X. We say that λ is in the resolvent set ρ(A) of A, if (λI −A)−1

exists and is a bounded linear operator on a dense domain of X.

It can be shown that λ ∈ ρ(A) if and only if (λI−A)−1 ∈ L(X). We shall
call (λI −A)−1 the resolvent operator of A and denote as R(λ,A). The spec-
trum of the operator is complement of the resolvent set and is decomposed
into three disjoint sets as defined below.

Definition 1.38. Let A be a closed linear operator on a (complex) normed
linear space X. The spectrum of A is defined to be

σ(A) = C \ ρ(A).

The point spectrum is

σp(A) = {λ ∈ C | (λI − A) is not injective}.

The continuous spectrum is

σc(A) = {λ ∈ C | (λI − A) is injective, ran(λI − A) = X, but
(λI − A)−1 is unbounded}

= {λ ∈ C | (λI − A) is injective, ran(λI − A) = X, but
ran(λI − A) 6= X}.

The residual spectrum is

σr(A) = {λ ∈ C | (λI −A) is injective, but ran(λI −A) is not dense in X}.

So σ(A) = σp(A) ∪ σp(A) ∪ σr(A) (cf. [10]).
A point λ ∈ σp(A) is an eigenvalue, and x 6= 0 such that (λI − A)x = 0,

an eigenvector .

Definition 1.39. Let λ0 be an eigenvalue of the closed linear operator A on
the Banach space X. Suppose further that this eigenvalue is isolated , that is
there exists an open neighbourhood O of λ0 such that σ(A)∩O = {λ0}. We
say that λ0 has order ν0 if for every x ∈ X

lim
λ→λ0

(λ− λ0)ν0(λI − A)−1x
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exists, but there exists an x0 such that the following limit does not

lim
λ→λ0

(λ− λ0)ν0−1(λI − A)−1x0.

If for every ν ∈ N there exists an xν ∈ X such that the limit

lim
λ→λ0

(λ− λ0)ν0(λI − A)−1xν

does not exist, then the order of λ0 is infinity.
For the isolated eigenvalue λ0 of finite order ν0, its (algebraic) multiplicity

is defined as dim(ker(λ0I − A)ν0). The elements of ker(λ0 − A)ν0 are called
the generalized eigenvectors corresponding to λ0.

Now we give a theorem in which we define the formula for the integral rep-
resentation of the resolvent . The formula relates semigroups to the resolvents
of their generators.

Theorem 1.40 (see [14]). Let T (t) be a strongly continuous semigroup on
the Banach space X and take constants ω ∈ R, M ≥ 1 (see Theorem 1.31.e))
such that

‖T (t)‖ ≤Meωt

for t ≥ 0. For the generator A of T (t) the following properties hold.

i) If λ ∈ C is such that R(λ,A)x =
∞∫
0

e−λsT (s)xds exists for all x ∈ X,

then λ ∈ ρ(A).

ii) If Reλ > ω, then λ ∈ ρ(A), and the resolvent is given by the integral
expression in i).

iii) ‖R(λ,A)‖ ≤ M
Reλ−ω for all Reλ > ω.

Property ii) in the above theorem means that the spectrum of a gener-
ator of a semigroup is always contained in a left half–plane. The number
determining the smallest such half–plane is an important characteristic of
any linear operator and is defined as follows.

Definition 1.41. To any linear operator A we associate its spectral bound
defined by

s(A) = sup{Reλ : λ ∈ σ(A)}.

As a consequence of Theorem 1.40.ii) the following relation between the
growth bound of a strongly continuous semigroup and the spectral bound of
its generator holds.
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Corollary 1.42. For a strongly continuous semigroup T (t) with generator
A, one has

−∞ ≤ s(A) ≤ ω0 < +∞.

Of course, the natural question seems to be—when s(A) = ω0? We will
answer this question in Section 1.5.

For our considerations, operators with compact resolvent are a very impor-
tant class of operators. An operator with compact resolvent has a pointwise
spectrum.

Lemma 1.43 (see [14]). Let A be a closed linear operator with 0 ∈ ρ(A) and
A−1 compact. The spectrum of A consists of only isolated eigenvalues with
finite multiplicity.

The next lemma is about the form of the spectrum of self-adjoint opera-
tors.

Lemma 1.44 (see [10]). If A is a self-adjoint operator on the Hilbert space
H, then σ(A) ⊂ R.

Corollary 1.45. Analogously to Lemma 1.44, if A is a skew-adjoint operator
on the Hilbert space H, then σ(A) ⊂ iR.

1.4 Generation Theorems

As we mentioned in Section 1.2 for any given semigroup we are able to find
its generator. The converse is more interesting. Does any operator generate
semigroup? Theorems which answer this question are called generation the-
orems . Thus, we now present the characterization of generators of arbitrary
strongly continuous semigroup.

We start with a fundamental result of Hille-Yosida theorem.

Theorem 1.46 (Hille-Yosida Theorem, see [10]). A necessary and suf-
ficient condition for a closed, densely defined, linear operator on a Hilbert
space H1 to be the infinitesimal generator of a C0-semigroup is that there
exist real numbers M,ω, such that for all real α > ω, α ∈ ρ(A), the resolvent
set of A, and

‖R(α,A)n‖ ≤ M

(α− ω)n
for all n ≥ 1,

where R(α,A) = (αI − A)−1 is the resolvent operator. In this case

‖T (t)‖ ≤Meωt.
1Theorem is also true in the case of Banach space X, see e.g. [14]
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As a general rule, operator A is a generator when the spectrum σ(A) lies
in some left half-plane and growth estimates of the form

‖R(α,A)n‖ ≤ M

(α− ω)n

hold for all powers of the resolvent R(λ,A) in some right half-plane (or on
some semiaxis (ω,∞)). The condition with estimation of the norm of the
resolvent is rather complicated and difficult to check in general situation.
Simpler conditions for an operator to generate a contraction semigroup are
given in Lumer-Phillips theorem, but before we present them, we need to
define the dissipative operator .

Definition 1.47. A linear operator A with D(A) contained in a Banach
space X is called dissipative if

‖(λ− A)x‖ ≥ λ‖x‖

for all λ > 0 and x ∈ D(A).

Remark 1.48 (see [14]). For operators in a Hilbert space there is an equiv-
alent condition for checking the dissipativity of the operator, namely

Re〈Ax, x〉 ≤ 0

for all x ∈ D(A).

Theorem 1.49 (Lumer-Phillips Theorem, see [39]). A necessary and
sufficient condition for a linear operator A with a dense domain in a Banach
space X to generate a strongly continuous semigroup of contraction is that
A be dissipative and that ran(I − A) = X.

Another important result in applications is the fact that the sum of a
generator and a bounded linear operator is a generator.

Theorem 1.50 (Phillips Theorem, see [43,72]). If an operator A generates
a semigroup on a Banach space X and K : X → X is a bounded linear
operator then the operator A+K with the domain identical to D(A) is also
a generator.

In general, semigroups are defined only for t ≥ 0. Now we can extend the
theory of generating strongly continuous semigroups to strongly continuous
groups defined for all t ∈ R. In order to do that we present the following
lemmas. At the beginning, we define T+(t) := T (t) and T−(t) = T (−t) for
t ≥ 0.
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Lemma 1.51 (see [10]). If T (t) is a C0-group, then T+(t) and T−(t) are
C0-semigroups.

Lemma 1.52 (see [10]). Let A be the infinitesimal generator of the C0-
semigroup T+(t), then −A is the infinitesimal generator of the C0-semigroup
T−(t),

Lemma 1.53 (see [10]). A is the infinitesimal generator of the C0-group if
and only if A is the infinitesimal generator of the C0-semigroup and −A is
the infinitesimal generator of the C0-semigroup.

Lemma 1.54 (see [10]). Let A be an infinitesimal generator of a C0-group.
The spectrum of A lies in a strip along the imaginary axis, i.e., σ(A) ⊂ {z ∈
C | |Re(s)| < β} for some β > 0.

1.5 Riesz Basis and Riesz-spectral Operators

One of the most important type of basis in a Hilbert space is the orthonormal
basis. Another very useful class of bases are the bases equivalent to the
orthonormal basis, the so-called Riesz basis. They are helpful in the case
where the operators encountered have eigenvectors that are not orthonormal
but form the Riesz basis.

We begin with the following definition.

Definition 1.55. A sequence {φj}∞j=1 of vectors of a Banach space X (or
Hilbert space) is called a Schauder basis of this space if every vector x ∈ X
can be expanded in a unique way in a series

x =
∞∑
j=1

cjφj

which converges in the norm of the space X.

The coefficients cj in a series expansion of a vector x in the case of Hilbert
space can be determined by

cj = 〈x, ψj〉, j = 1, 2, . . .

where {ψj}∞j=1 is a biorthogonal sequence corresponding to {φj}∞=1 and is
defined as follows.
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Definition 1.56. Let {φj}∞j=1 and {ψj}∞j=1 be sequences of elements of the
Hilbert space H. Then {ψj}∞j=1 is biorthogonal to {φj}∞j=1 if for i, j ∈ N

〈φi, ψj〉 = δij =
{

1 if i = j,
0 if i 6= j.

The sequence {φj}∞j=1 is independent if there exists a sequence {ψj}∞j=1 which
is biorthogonal to {φj}∞j=1. The sequence {φj}∞j=1 is complete in H if 0 is the
only element of H which is orthogonal to each φj (j ∈ N). Equivalently,
{φj}∞j=1 is complete if and only if its linear span is dense in H.

Riesz basis is a generalization of orthonormal basis.

Definition 1.57. A basis for a Hilbert space is a Riesz basis if it is equivalent
to an orthonormal basis, that is, if it is obtained from an orthonormal basis
by means of a bounded invertible operator.

The next theorem gives a number of characteristic properties of Riesz
bases.

Theorem 1.58 (see [16, 70]). The following assertions are equivalent.

a) The sequence {φj}∞j=1 forms a Riesz basis for H.

b) There is an equivalent2 inner product on H, with respect to which the
sequence {φj}∞j=1 becomes an orthonormal basis for H.

c) The sequence {φj}∞j=1 is complete in H, and there exist positive con-
stants A and B such that for an arbitrary positive integer n and arbi-
trary scalars c1, . . . , cn one has

A
n∑
i=1

|ci|2 ≤
∥∥∥∥∥
n∑
i=1

ciφi

∥∥∥∥∥
2

≤ B
n∑
i=1

|ci|2.

d) The sequence {φj}∞j=1 is complete in H, and its Gram matrix

[〈φi, φj〉]∞i,j=1
generates a bounded invertible operator on `2.

e) The sequence {φj}∞j=1 is complete in H and possesses a complete bior-
thogonal sequence {ψj}∞j=1 such that

∞∑
i=1

|〈x, φi〉| <∞ and
∞∑
i=1

|〈x, ψi〉| <∞

for every x ∈ H.
2Two inner products are said to be equivalent if they generate equivalent norms.
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Remark 1.59. The inequality from property c) in the above theorem is also
true for infinite number of elements, i.e.,

A
∞∑
i=1

|ci|2 ≤
∥∥∥∥∥
∞∑
i=1

ciφi

∥∥∥∥∥
2

≤ B
∞∑
i=1

|ci|2.

Another very useful result for generating Riesz basis from eigenvectors
of the infinitesimal generator of a strongly continuous group gives us Zwart
theorem.

Theorem 1.60 (Zwart Theorem, see [75]). Let A be the infinitesimal gen-
erator of C0-group T (t) on the Hilbert space H. We denote the eigenvalues
of A by λn (counting with multiplicity), and the corresponding (normalized)
eigenvectors by {φn}. If the following two conditions hold,

a) The span of the eigenvectors form a dense set in H.

b) The point spectrum has a uniform gap, i.e.,

inf
n6=m
|λn − λm| > 0,

then the eigenvectors form a Riesz basis on H.

Now we define a class of operators with simple eigenvalues whose eigen-
vectors formed a Riesz basis.

Definition 1.61. Suppose that A is a linear, closed operator on a Hilbert
space H, with simple eigenvalues {λn, n ≥ 1} and suppose that the corre-
sponding eigenvectors {φn, n ≥ 1} form a Riesz basis in H. If the closure of
{λn, n ≥ 1} is totally disconnected, then we call A a Riesz-spectral operator .

By totally disconnected we mean that no two points λ, µ ∈ {λn, n ≥ 1}
can be joined by a segment lying entirely in {λn, n ≥ 1}.

Theorem 1.62 (see [10]). Suppose that A is a Riesz-spectral operator with
simple eigenvalues {λn, n ≥ 1} and corresponding eigenvectors {φn, n ≥ 1}.
Let {ψn, n ≥ 1} be the eigenvectors of A∗ such that 〈φn, ψm〉 = δnm. Then A
satisfies:

a) ρ(A) = {λ ∈ C | inf
n≥1
|λ − λn| > 0}, σ(A) = {λn, n ≥ 1}, and for

λ ∈ ρ(A) the inverse (λI − A)−1 is given by

(λI − A)−1 =
∞∑
n=1

1
λ− λn

〈·, ψn〉φn.
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b) A has the representation

Ax =
∞∑
n=1

λn〈x, ψn〉φn

for x ∈ D(A), and

D(A) = {x ∈ H |
∞∑
n=1

|λn|2|〈x, ψn〉|2 <∞}.

c) A is the infinitesimal generator of a C0-semigroup if and only if
sup
n≥1

Re(λn) <∞ and T (t) is given by

T (t) =
∞∑
n=1

eλnt〈·, ψn〉φn.

d) The growth bound of the semigroup T (t) is given by

ω0 = inf
t>0

(1
t

log ‖T (t)‖
)

= sup
n≥1

Re(λn).

As we mentioned in Section 1.3 spectral bound of generator A is always
less or equal to the growth bound of a strongly continuous semigroup T (t)
generated by A (see Corollary 1.42). From property d) in Theorem 1.60
we have that for Riesz-spectral operator spectral bound is equal to growth
bound, i.e. ω0(T ) = s(A). In this case we will say that Riesz-spectral operator
satisfies spectrum determined growth condition.
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Chapter 2

Timoshenko Beam Theory

There are four widely used models for describing vibrations in beams. These
four theories are Euler-Bernoulli, shear, Rayleigh and Timoshenko [13, 21].
The Euler-Bernoulli beam theory, sometimes called classical beam theory,
was presented in the 40s of the 18th century [59]. This model includes the
strain energy due to the bending and the kinetic energy due to the lateral
displacement and is widely used because of simplicity and sufficiently good
approximations for many engineering problems. Other theories have intro-
duced additional physical effects to improve the classical beam theory. The
shear model adds shear deformation effects and was for the first time intro-
duced by W. J. M. Rankine in 1858 [45]. At a similar time (in 1877) Lord
Rayleigh [55] extended Euler-Bernoulli equation by incorporating the rotary
inertia of the cross-section. Note that taking into account the effects of the
moment of inertia was proposed 18 years earlier by J. A. C. Bresse in [5].
Finally, in 1921 S. P. Timoshenko published his best known paper [58] (cited
about 1500 times) in which he presented generalization of Euler-Bernoulli
equation with above-mentioned physical effects, i.e. shear and rotary inertia
effects. There are some historical controversies concerning this date [12], be-
cause this theory can be found in the earlier works of Timoshenko, in the
book on elasticity in the Russian language from 1916 [56], and for the first
time in English language in Croatian journal from 1920 [57].

From the mathematical point of view, the main difference between Tim-
oshenko and the rest of beam models (Euler-Bernoulli, shear, Rayleigh) is
that the operator connected with the system of partial differential equations
has a spectrum that consists of not one eigenvalues family but two families of
eigenvalues. Furthermore, the eigensystem of Timoshenko beam model is not
a Riesz basis, only the system with divided differences forms a Riesz basis for
a sufficiently large time T . This is one of the main reasons that this system is
very interesting for analyzing different problems from mathematical control
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theory.

2.1 Modeling Rotating Timoshenko Beam

Now, we will introduce a detailed derivation of the vibration equations of the
rotating Timoshenko beam, which can be found originally in the monograph
of W. Krabs and G. M. Sklyar [34].

PRODUCED BY AN AUTODESK STUDENT VERSION

PR
O

D
U

C
ED

 B
Y 

AN
 A

U
TO

D
ES

K 
ST

U
D

EN
T 

VE
R

SI
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

PR
O

D
U

C
ED

 BY AN
 AU

TO
D

ESK STU
D

EN
T VER

SIO
N

r

`

Figure 2.1: Beam at the position of rest

We consider the rotation of a two dimensional beam in a horizontal plane
whose left end is clamped into the disk of a driving motor (see Fig. 2.1). Let
r > 0 be the radius of the disk and let θ = θ (t) be the rotation angle as a
function of the time t > 0. Let ` > 0 be the length of the beam and for every
x ∈ [0, `] and let ω(x) be the cross-section of the beam at x which is assumed
to be an interval which is symmetric to y = 0 (see Fig. 2.2). This implies that
in the case of a rigid rotation of the beam (i.e. without additional vibration)
the position of an arbitrary point (x, y) ∈ [0, `] × ω(x) under the rotation
angle θ is given by

~Rθ(x, y) = (r + x)~e1(θ) + y~e2(θ),

where
~e1(θ) = (cos θ, sin θ) and ~e2(θ) = (− sin θ, cos θ).

Now let ~r(x, y) be the additional displacement of (x, y) under the influence
of vibration. For small displacements we can assume that

~r(x, y) = ~r(x, 0) + y~ry(x, 0), x ∈ [0, `], y ∈ ω(x).

Let
~r(x, 0) = w̃1(x, θ)~e1(θ) + w̃2(x, θ)~e2(θ)
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Figure 2.2: Rigid beam in motion

for x ∈ [0, `]. Furthermore, assume that

~ry(x, 0) = ξ̃(x, θ)~e1(θ)

for x ∈ [0, `]. The displacement of the point (x, y) ∈ [0, `] × ω(x) under the
influence of rotation and additional vibration is then given by

~̃R(x, y, θ) = ~Rθ(x, y) + ~r(x, 0)

=
(
r + x+ w̃1(x, θ) + ξ̃(x, θ)y

)
~e1(θ) + (y + w̃2(x, θ))~e2(θ).

for x ∈ [0, `] and y ∈ ω(x). Let us put

~R(x, y, t) = ~̃R(x, y, θ(t)),
w1(x, t) = w̃1(x, θ(t)),
w2(x, t) = w̃2(x, θ(t)),

ξ(x, t) = ξ̃(x, θ(t)).

Then it follows that

~R(x, y, t) = (r + x+ w1(x, t) + ξ(x, t)y)~e1 (θ(t)) + (y + w2(x, t))~e2 (θ(t))
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for x ∈ [0, `], y ∈ ω(x), t ∈ R+. Let us denote the derivative with respect to
t by a dot. Then

~̇R(x, y, t) =
(
ẇ1(x, t) + ξ̇(x, t)y

)
~e1 (θ(t))

+ (r + x+ w1(x, t) + ξ(x, t)y) θ̇(t)~e2 (θ(t))

+ ẇ2(x, t)~e2 (θ(t))− (y + w2(x, t)) θ̇(t)~e1 (θ(t))

=
(
ẇ1(x, t) + ξ̇(x, t)y − (y + w2(x, t)) θ̇(t)

)
~e1 (θ(t))

+
(
(r + x+ w1(x, t) + ξ(x, t)y) θ̇(t) + ẇ2(x, t)

)
~e2 (θ(t)) .

This implies∥∥∥∥ ~̇R(x, y, t)
∥∥∥∥2 =

(
ẇ1(x, t) + ξ̇(x, t)y − (y + w2(x, t)) θ̇(t)

)2
+
(
(r + x+ w1(x, t) + ξ(x, t)y) θ̇(t) + ẇ2(x, t)

)2
for x ∈ [0, `], y ∈ ω(x), t ∈ R+. Assume additionally that

w1 · θ̇ = w2 · θ̇ = ξ · θ̇ = 0.

Then∥∥∥∥ ~̇R(x, y, t)
∥∥∥∥2 =

(
ẇ1(x, t) + ξ̇(x, t)y − θ̇(t)y

)2
+
(
(r + x) θ̇(t) + ẇ2(x, t)

)2
for x ∈ [0, `], y ∈ ω(x), t ∈ R+.

Let ρ̃ be the (constant) density of the material of the beam. Then, for
every t ∈ R+, the kinetic energy of the beam is given by

K(w1, w2, ξ)(t) =
ρ̃

2

`∫
0

∫
ω(x)

∥∥∥∥ ~̇R(x, y, t)
∥∥∥∥2 dydx.

Let, for every x ∈ [0, `], A(x) and M(x) denote cross-section area and area
moment of inertia, respectively, then

A(x) =
∫

ω(x)

dy and M(x) =
∫

ω(x)

y2dy.

Then it follows that

K(w1, w2, ξ)(t) =
ρ̃

2

 `∫
0

A(x)ẇ1(x, t)2 +M(x)
(
ξ̇(x, t)2 + θ̇(t)2

)

− 2M(x)ξ̇(x, t)θ̇(t)dx+
`∫
0

A(x)(r + x)2θ̇(t)2

+ A(x)ẇ2(x, t)2 + 2A(x)(r + x)θ̇(t)ẇ2(x, t)dx
)
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for t ∈ R+, hence

K(w1, w2, ξ)(t) =
ρ̃

2

`∫
0

A(x)ẇ1(x, t)2 +M(x)
(
ξ̇(x, t)− θ̇(t)

)2
+ A(x)

(
(r + x)θ̇(t) + ẇ2(x, t)

)2
dx

for t ∈ R+.
In [68] it is shown that, for every t ∈ R+, the potential energy of the

beam is given by

U(w1, w2, ξ)(t) =
1
2

`∫
0

E(x)
(
M(x)ξ′(x, t)2 + A(x)w′1(x, t)

2
)

+K(x) (w′2(x, t) + ξ(x, t))2 dx,

where E(x) is Young’s modulus, K(x) is the shear modulus, and “ ′ ” denotes
the derivative with respect to x.

For x = 0, we have the requirement

~R(0, y, t) = r~e1(θ) + y~e2(θ)

for all y ∈ ω(x) and t ∈ R+. This implies

w1(0, t) = w2(0, t) = ξ(0, t) = 0 for all t ∈ R+.

Now let T > 0 be chosen arbitrarily and let VT be the subspace of C2([0, `]×
[0, T ],R3) consisting of all vector functions (w1, w2, ξ) ∈ C2([0, `]× [0, T ],R3)
which satisfy the boundary conditions

w1(0, t) = w2(0, t) = ξ(0, t) = 0 for all t ∈ [0, T ].

In order to get a vector function (w1, w2, ξ) ∈ VT which describes the motion
of the beam we have to minimize the Lagrange functional

L(w1, w2, ξ) =
T∫
0

K(w1, w2, ξ)(t)− U(w1, w2, ξ)(t)dt

on VT . A necessary condition for (w1, w2, ξ) ∈ VT to minimize L = L(w1, w2,
ξ) on VT is

D(w1,w2,ξ)L(h1, h2, h3) = 0 for all (h1, h2, h3) ∈ VT ,
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where DwL(h) denotes the Gateaux derivative of L at the w ∈ VT in the
direction h ∈ VT . This is equivalent to the statement that

T∫
0

ρ̃

`∫
0

A(x)ẇ1ḣ1 +M(x)ξ̇ḣ3 −M(x)θ̇ḣ3 + A(x)ẇ2ḣ2 + A(x)(r + x)θ̇ḣ2dx

−
`∫
0

E(x) (M(x)ξ′h′3 + A(x)w′1h
′
1)

+K(x) (w′2h
′
2 + ξh3 + ξh′2 + w′2h3) dxdt

= 0

for all (h1, h2, h3) ∈ VT .
Now let us assume that the beam is uniform, that is

E(x) = E, K(x) = K and ω(x) = ω for all x ∈ [0, `]

which implies

A(x) = A =
∫
ω

dy and M(x) = M =
∫
ω

y2dy for all x ∈ [0, `].

Then it follows that
T∫
0

ρ̃

`∫
0

−Aẅ1h1 −Mξ̈h3 +Mθ̈h3 − Aẅ2h2 − A(r + x)θ̈h2dx

+
`∫
0

E (Mξ′′h3 + Aw′′1h1) +K (w′′2h2 − ξh3 + ξ′h2 − w′2h3) dxdt

−
T∫
0

E (Mξ′(`, t)h3(`, t) + Aw′1(`, t)h1(`, t))

+K (w′2(`, t)h2(`, t) + ξ(`, t)h2(`, t)) dt

=
T∫
0

`∫
0

(−ρ̃Aẅ1 + EAw′′1)h1dx+ EAw′1(`, t)h1(`, t)dt

+
T∫
0

`∫
0

(
−ρ̃Aẅ2 − ρ̃A(r + x)θ̈ +K (w′′2 + ξ′)

)
h2dx

+K (w′2(`, t) + ξ(`, t))h2(`, t)dt

+
T∫
0

`∫
0

(
−ρ̃M

(
ξ̈ − θ̈

)
+ EMξ′′ −K (w′2 + ξ)

)
h3dx
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− EMξ′(`, t)h3(`, t)dt
= 0

for all (h1, h2, h3) ∈ VT with hi(x, 0) = hi(x, T ) = 0, i = 1, 2, 3, for all
x ∈ [0, `]. This implies the differential equations
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Figure 2.3: Deflection of the center line of the rotating beam



ẅ1(x, t)−
EA

ρ
w′′1(x, t) = 0,

ẅ2(x, t)−
K

ρ
(w′′2(x, t) + ξ′(x, t)) = −θ̈(t)(r + x),

ξ̈(x, t)− EA

ρ
ξ′′(x, t) +

K

I
(w′2(x, t) + ξ(x, t)) = θ̈(t)

for x ∈ (0, `) and t ∈ (0, T ) with ρ = ρ̃A, I = ρ̃M , where ρ is linear density,
I denotes moment of inertia, and the boundary conditions

w′1(`, t) = w′2(`, t) + ξ(`, t) = ξ′(`, t) = 0 for t ∈ [0, T ].

If we prescribe initial conditions in the form

w1(x, 0) = ẇ1(x, 0) = 0, w2(x, 0) = ẇ2(x, 0) = 0,
ξ(x, 0) = ξ̇(x, 0) for all x ∈ [0, `],
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Figure 2.4: The rotation angle of the cross-section area of the rotating beam

then it follows that w1 ≡ 0 on [0, `]× [0, T ].
Finally, assuming w = w2, equations of vibration of rotating Timoshenko

beam (see Fig. 2.3 and 2.4) takes form
ẅ(x, t)− K

ρ
(w′′(x, t) + ξ′(x, t)) = −θ̈(t)(r + x),

ξ̈(x, t)− EA

ρ
ξ′′(x, t) +

K

I
(w′(x, t) + ξ(x, t)) = θ̈(t)

(2.1)

for x ∈ (0, `) and t > 0, with boundary conditions
w(0, t) = ξ(0, t) = 0,
w′(`, t) + ξ(`, t) = 0,

ξ′(`, t) = 0

for t > 0.

2.2 Operator Equation of Undamped Beam

Following [34], we want to rewrite equations of motion of rotating Timo-
shenko beam (2.1) in the operator equation form

ż(t) = Az(t) + Bu(t), t ∈ (0, T ). (2.2)
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At the beginning, we normalize the units to simplify the system (2.1). To
this end, we will introduce an appropriate change of variables

x̃ =
√
ρ

I
x, t̃ =

√
K

I
t,

of constants

˜̀=
√
ρ

I
`, T̃ =

√
K

I
T, r̃ =

√
ρ

I
r,

and of functions

w̃(x̃, t̃) =
√
ρ

I
w(x, t), ξ̃(x̃, t̃) = ξ(x, t), θ̃(t̃) = θ(t)

for x ∈ [0, `] and t ∈ [0, T ]. Then, system (2.1) can be transferred into
¨̃w(x̃, t̃)− w̃′′(x̃, t̃)− ξ̃′(x̃, t̃) = − ¨̃θ(t̃)(r̃ + x̃),

¨̃ξ(x̃, t̃)− EA

K
ξ̃′′(x̃, t̃) + w̃′(x̃, t̃) + ξ̃(x̃, t̃) = ¨̃θ(t̃)

in (0, ˜̀)×(0, T̃ ). Finally, after putting ˜̀= 1, denoting EA
K

= γ2 and replacing
“˜” by “ ”, u(t) := θ̈(t), we obtain free-dimensional two partial differential
equations of the form ẅ(x, t)− w′′(x, t)− ξ′(x, t) = −u(t)(r + x),

ξ̈(x, t)− γ2ξ′′(x, t) + w′(x, t) + ξ(x, t) = u(t)
(2.3)

for x ∈ (0, 1) and t > 0, with boundary conditions
w(0, t) = ξ(0, t) = 0,
w′(1, t) + ξ(1, t) = 0,

ξ′(1, t) = 0
(2.4)

for t > 0.
Now we will rewrite (2.3) in the form of operator equation (2.2), namely

ż =


ẇ

ξ̇
ẅ

ξ̈

 =
(

0 I
−Aγ 0

)
︸ ︷︷ ︸

A


w
ξ
ẇ

ξ̇

+


0
0

−r − x
1

u(t), (2.5)

where I : D
(
A
1
2
γ

)
→ H = L2 ((0, 1),R2) is embedding operator, Aγ :

D (Aγ)→ H is linear operator defined by

Aγ

(
y
z

)
=
(

−y′′ − z′
−γ2z′′ + y′ + z

)
(2.6)
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for
(
y
z

)
∈ D (Aγ), where

D (Aγ) =
{(

y
z

)
∈ H2((0, 1),R2)

∣∣∣∣∣ y(0) = z(0) = 0
y′(1) + z(1) = z′(1) = 0

}
(2.7)

and domain of the operator A is given by D(A) = D (Aγ) × D
(
A
1
2
γ

)
⊂

H = D
(
A
1
2
γ

)
× H (see [34]). Note that A

1
2
γ is a square root of Aγ, where

its existence is guaranteed by the fact that Aγ is self-adjoint and positive

definite operator. A
1
2
γ is also self-adjoint and positive definite (see Lemma

1.27).

2.3 Operator Equation of Damped Beam

One of possible extension of the model (2.5) of a rotating Timoshenko beam
can be considering the effect of introducing damping to the model. We can
introduce damping operator in many ways, but here we use three particular
types of damping operators which were analyzed in [63–66].

Again, following [34], we will consider operator equation of the form

ż =


ẇ

ξ̇
ẅ

ξ̈

 =
(

0 I
−Aγ −Bi

)
︸ ︷︷ ︸

Ai


w
ξ
ẇ

ξ̇

+


0
0

−r − x
1

u(t) (2.8)

for i = 1, 2, 3, where I, Aγ are defined as previously and Bi : D(Bi) → H
are symmetric distributed damping operators, D(Ai) ⊆ D(A). The following
damping operators were considered,

B1

(
y
z

)
=
(

0
ν2z

)
, (2.9)

where D (B1) = D
(
A
1
2
γ

)
⊃ D (Aγ),

B2

(
y
z

)
=
(
−µ2y′′

0

)
, (2.10)

with D (B2) = D (Aγ). The last considered case concerns the damping oper-
ator B3, which is an additive combination of B1 and B2, of the form

B3

(
y
z

)
=
(
−µ2y′′
ν2z

)
, (2.11)
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with D (B3) = D (B2) = D (Aγ).
The main results of stability analysis in Chapter 3 are related to operator

B1, while operators B2 and B3 will be used to compare the obtained results.

2.4 Cantilever Beam Model

The observability problem, described in Chapter 4, will be solved on a mod-
ified model, the so-called cantilever beam model. The main difference is the
elimination of the rotating disk to which the beam is clamped. As a result we
obtain a rigid beam that is fixed to a support, usually presented as a vertical
structure (e.g. wall) and the beam’s other end is free (see Fig. 2.5 and 2.6).
We additionally assume that the parameter γ describing the physical prop-
erties of the beam material is equal to 1, i.e. γ = 1. In this case, the system
of partial differential equations has the following form
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Figure 2.5: Deflection of the center line of the cantilever beam

 ẅ(x, t)− w′′(x, t)− ξ′(x, t) = 0,

ξ̈(x, t)− ξ′′(x, t) + w′(x, t) + ξ(x, t) = 0
(2.12)

for x ∈ (0, 1) and t > 0, with clamped-free boundary conditions
w(0, t) = ξ(0, t) = 0,
w′(1, t) + ξ(1, t) = 0,

ξ′(1, t) = 0
(2.13)
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Figure 2.6: The rotation angle of the cross-section area of the cantilever beam

for t > 0.
Operator equation has the following form

ż =


ẇ

ξ̇
ẅ

ξ̈

 =
(

0 I
−A1 0

)
︸ ︷︷ ︸

A


w
ξ
ẇ

ξ̇

 , (2.14)

where I : D
(
A
1
2
1

)
→ H is embedding operator, A1 : D (A1) → H is linear

operator defined by (2.6) for γ = 1, i.e.

A1

(
y
z

)
=
(
−y′′ − z′
−z′′ + y′ + z

)
, (2.15)

where D (A1) is defined by (2.7) with γ = 1, and domain of the operator A
is given by D(A) = D (A1)×D

(
A
1
2
1

)
⊂ H = D

(
A
1
2
1

)
×H.
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Chapter 3

Stability Analysis

Stability is one of the most important properties of dynamical systems. It
is widely used not only in mathematics but also in related fields such as
physics or chemistry, and even unrelated fields such as biology or economics.
In general, stability of solutions of differential equations means that small
perturbations of initial conditions lead to small perturbations of solutions.

In this chapter we analyze stability of a particular model of vibrations of
Timoshenko beams with a weak (distributed) damping connected to rotations
of cross-sections of the beam, of deflections of the center line of the beam, and
of both. In one of the cases considered, for some values of physical parameters
of the beam the optimal stability margin phenomenon may be observed,
which means that under some conditions there exists an optimal value of a
damping coefficient, that is a coefficient that guarantees the fastest possible
decay of norms of solutions of the system.

Main results of this chapter were published in [63–67].

3.1 Various Concepts of Stability

Stability can be defined in many different ways. In the literature, there are
often presented definitions of stability referring to the equilibrium point (see
e.g. Lyapunov stability in [25]). Here we will consider semigroup stability
approach.

We start with the differential equation

ż(t) = Az(t), z(0) = z0, t ≥ 0, (3.1)

where A is the infinitesimal generator of a semigroup T (t) on a complex
Banach space X. We use the following stability definitions related to the
C0-semigroup notation (see e.g. [10]).

41



Definition 3.1. The C0-semigroup T (t) on the Banach space X is asymp-
totically stable (strongly stable) if

lim
t→∞

T (t)x = 0, ∀x ∈ X.

In addition, if the solutions tend to zero exponentially quickly, then we
can consider the exponential stability.

Definition 3.2. The C0-semigroup T (t) on the Banach space X is exponen-
tially stable if there exist positive constants M and ω such that

‖T (t)‖ ≤Me−ωt for t ≥ 0.

The constant ω is called the decay rate, and the supremum over all possible
values of ω is the stability margin of T (t).

Remark 3.3. Stability margin of a exponentially stable semigroup is equal
to the opposite of its growth bound (see (1.2) from Theorem 1.31.e)).

In the case of finite-dimensional state space X there are easily checkable
conditions for different notions of stability of system (3.1) (see [72]).

Theorem 3.4. Let A be a generator of semigroup T (t) on a finite-dimension-
al space X. The following conditions are equivalent:

a) For some M > 0, ω > 0 and all t ≥ 0, ‖T (t)‖ ≤Me−ωt.

b) For arbitrary z0 ∈ X, z(t)→ 0 exponentially as t→ +∞.

c) For arbitrary z0 ∈ X,
+∞∫
0

‖z(t)‖2dt < +∞.

d) For arbitrary z0 ∈ X, z(t)→ 0 as t→ +∞.

e) s(A) = sup{Reλ : λ ∈ σ(A)} < 0.

In general, if we pass from finite- to infinite-dimensional state space then
the conditions from above theorem are not equivalent (see [72]).

Theorem 3.5. Let A be a generator of semigroup T (t) on an infinite–
dimensional Banach space X. Then

a) Conditions 3.4.a), 3.4.b) and 3.4.c) are all equivalent.

b) Conditions 3.4.a), 3.4.b) and 3.4.c) are essentially stronger than 3.4.d)
and 3.4.e).
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c) Condition 3.4.d) does not imply, in general, condition 3.4.e), even if
X is a Hilbert space.

d) Condition 3.4.e) does not imply, in general, condition 3.4.d), even if
X is a Hilbert space.

Theorem 3.5 shows that analyzing stability in infinite-dimensional sys-
tems is much more complicated. In particular a proper location of spectrum
does not guarantee stability (see [71]), nor existence of spectrum part on the
axis (c.f. [52]) does not guarantee instability. In some cases it may depend
on how fast the eigenvalues approach the imaginary axis (see [51], e.g. in the
case of neutral-type systems). Thus, a more detailed analysis is required. A
very important result about stability in Banach spaces was obtaind by G.
M. Sklyar and V. Y. Shirman in [52]. They proved that if A is a dissipative
operator fulfilling the following conditions: A is bounded, the spectrum of A
has at most countable intersection with the imaginary axis and A∗ has no
imaginary eigenvalues, then the Cauchy problem for equation (3.1) is asymp-
totically stable. Y. I. Lyubich and V. Q. Phóng in [40] generalized this result
to unbounded operators. Also in the same year, W. Arendt and C. J. K.
Batty in [2] presented independently proof of the same theorem.

Theorem 3.6 (Arendt-Batty-Lyubich-Phóng-Sklyar-Shirman Theo-
rem, [2, 40, 52]). Let the operator A generate a bounded strongly continuous
semigroup T (t), t ≥ 0. If the intersection of the spectrum of A with the imag-
inary axis is at most countable and A∗ has no imaginary eigenvalues, then
the Cauchy problem for equation (3.1) is asymptotically stable.

Remark 3.7. From Arendt-Batty-Lyubich-Phóng-Sklyar-Shirman theorem
we can deduce that the operator A also has no imaginary eigenvalues, since
the Cauchy problem is asymptotically stable. Therefore, if X is the reflex-
ive Banach space, then in the theorem we can replace the absence of the
imaginary eigenvalues of A instead of A∗.

In addition, Arendt-Batty-Lyubich-Phóng-Sklyar-Shirman theorem allow
us to make the following corollary for C0-groups.

Corollary 3.8. If the spectrum of the generator A of a bounded strongly
continuous group does not intersect the imaginary axis, then the Cauchy
problem for equation (3.1) is asymptotically stable.

3.2 Results for Undamped Beam Model

W. Krabs and G. M. Sklyar in [28, 29, 32–35] (in [28, 29] together with V. I.
Korobov, in [35] together with J. Woźniak) considered different problems of

43



controllability and stabilizability of rotating Timoshenko beams. They solved
the problem of transfering the beam from a position of rest into a position of
rest under a given angle within a given time [32]. This problem is solvable, if
the time of rotation prescribed is large enough. In [33] the stabilizability of the
model is proved and an explicit form of the stabilizing linear feedback control
is given. In [28], the authors extend the results on controllability. They showed
that the control realizing the rotation of a Timoshenko beam can be found in
piecewise constant and gave a construction of this control. In [29] the problem
of controllability from the position of rest into an arbitrary position at some
given time is investigated. The problem was solved using Ullirch theorem,
which is a generalization of Paley-Wiener theorem. In [35] the condition of
exact controllability under the assumption that the parameter γ appearing
in the model equation is rational is given.
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Figure 3.1: Spectrum of the operator A for γ = 1—two families of points
approaching each other (black circles denote family λ

(1)
k , red crosses denote

family λ(2)k )

For stability analysis, an important result was obtained in [33]. It was
proved there that the undamped model of a slowly rotating Timoshenko
beam is unstable. Furthermore, spectral analysis of the operator A defined
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in (2.5) allowed to formulate the following result [32, 34].

Theorem 3.9. The eigenvalues of the operator A are two asymptotic families
λ(1)n = ±

(
γ 2k+12 π + ε2k+1

)
i, if n = 2k + 1 and λ(2)n = ±

(
2k+1
2 πi+ ε2k

)
i, if

n = 2k, where lim
n→∞

εn = 0. In particular case for γ = 1, the eigenvalues

of the operator A are two asymptotic families λ(1)n = ±
(
2k+1
2 π + ε2k+1

)
i, if

n = 2k+ 1 and λ(2)n = ±
(
2k+1
2 πi− ε2k

)
i, if n = 2k, where 0 < ε2k+1, ε2k and

lim
n→∞

εn = 0.
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Figure 3.2: Spectrum of the operator A for γ = 2—two separated families of
points (black circles denote family λ(1)k , red crosses denote family λ(2)k )

The behavior of the spectrum of the operator A is very interesting. For
γ = 1 the spectrum consists of two families of points approaching each other
(see Fig. 3.1), for some values of γ, e.g. γ = 2, the spectrum consists of
two separated families of points (see Fig. 3.2) and for some values of γ, e.g.
γ = 3, the spectrum consists of two families of points and some, but not all,
subfamilies are asymptotically close (see Fig. 3.3).

In the following sections, Theorem 3.9 will be used to compare how the
spectrum of the operator will change with the damping effect included.
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3.3 Spectral Properties of the Operator of
Damped Beam

In this section, we derive the general spectral properties of the operator
A1, defined by (2.8) with damping operator B1 from (2.9); operator A1 is
neither self-adjoint nor skew-adjoint. Namely, we prove the compactness of
the resolvent. As a result we obtain only the point spectrum of the operator.
Then, we observe that A1 generate a contraction group.

At the beginning we remind the form of operator A1:

A1


y1(x)
y2(x)
y3(x)
y4(x)

 =


y3(x)
y4(x)

y′′1(x) + y′2(x)
γ2y′′2(x)− y′1(x)− y2(x)− ν2y4(x)

 , (3.2)
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with a domain

D(A1) =



y1
y2
y3
y4

 ∈ H2 ×H1
∣∣∣∣∣∣∣
y1(0) = y2(0) = 0
y′1(1) + y2(1) = y′2(1) = 0
y3(0) = y4(0) = 0

 ⊂ H,

where H2 = H2((0, 1),R2) and H1 = H1((0, 1),R2). Operator A1 is closed
and densely defined. We proceed with the following lemma.

Lemma 3.10. Operator A1 is invertible and the inverse operator A−11 is
compact.

Proof. We consider the following equation,

A1


y1(x)
y2(x)
y3(x)
y4(x)

 =


g1(x)
g2(x)
g3(x)
g4(x)

 , (3.3)

where (y1(x), y2(x), y3(x), y4(x))T ∈ D(A1) and (g1(x), g2(x), g3(x), g4(x))T ∈
H, and T denotes transpose. Using the form (3.2) of operator A1, equation
(3.3) reads 

y3(x) = g1(x),
y4(x) = g2(x),

y′′1(x) + y′2(x) = g3(x),
γ2y′′2(x)− y′1(x)− y2(x)− ν2y4(x) = g4(x).

(3.4)

From the third of these equations and domain condition y′1(1) + y2(1) = 0
we obtain

y′1(x) + y2(x) = −
∫ 1
x
g3(s)ds, x ∈ [0, 1]. (3.5)

The relation (3.5) and the second and the fourth equation give

y′′2(x) =
1
γ2

(
−
∫ 1
x
g3(s)ds+ ν2g2(x) + g4(x)

)
, x ∈ [0, 1].

After integration and using domain conditions y′2(1) = y2(0) = 0 we get

y2(x) =
1
γ2

(∫ x

0

∫ 1
s1

∫ 1
s2
g3(s3)ds3ds2ds1 − ν2

∫ x

0

∫ 1
s1
g2(s2)ds2ds1

−
∫ x

0

∫ 1
s1
g4(s2)ds2ds1

)
, x ∈ [0, 1].
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Now substituting y2(x) into (3.5) and taking account of domain condition
y1(0) = 0 we obtain

y1(x) = −
∫ x

0

∫ 1
s1
g3(s2)ds2ds1 −

1
γ2

(∫ x

0

∫ s1

0

∫ 1
s2

∫ 1
s3
g3(s4)ds4ds3ds2ds1

− ν2
∫ x

0

∫ s1

0

∫ 1
s2
g2(s3)ds3ds2ds1 −

∫ x

0

∫ s1

0

∫ 1
s2
g4(s3)ds3ds2ds1

)
.

Since (g3(x), g4(x))T ∈ H = L2 ((0, 1),R2) and y1(x) and y2(x) are integrals
of g2(x), g3(x) and g4(x), so Sobolev’s Embedding Theorem (see e.g. [14])
asserts that A−1 is a compact operator on H.

Corollary 3.11. Operator A1 has a compact resolvent and the spectrum
σ (A1) is point-wise.

Following the authors of [34] let us introduce scalar product in considered
Hilbert space H

〈z1, z2〉H =
〈
A
1
2v1, A

1
2v2
〉
H

+ 〈w1, w2〉H (3.6)

for all z1 = (v1, w1)
T and z2 = (v2, w2)

T in H with accompanying norm
‖z‖2H = 〈z, z〉H. Further it follows, for every z = (y1, y2, y3, y4)

T ∈ H,

〈Az, z〉H =
〈
A
1
2

(
y3
y4

)
, A

1
2

(
y1
y2

)〉
H

−
〈
A

(
y1
y2

)
,

(
y3
y4

)〉
H

−
〈
B

(
y3
y4

)
,

(
y3
y4

)〉
H

=
〈
A
1
2

(
y3
y4

)
, A

1
2

(
y1
y2

)〉
H

−
〈
A
1
2

(
y1
y2

)
, A

1
2

(
y3
y4

)〉
H

− ν2
1∫
0

y24(x)dx

=
〈
A
1
2

(
y1
y2

)
, A

1
2

(
y3
y4

)〉
H

−
〈
A
1
2

(
y1
y2

)
, A

1
2

(
y3
y4

)〉
H

− ν2
1∫
0

y24(x)dx.

Observe that

Re

〈A 12 ( y1
y2

)
, A

1
2

(
y3
y4

)〉
H

−
〈
A
1
2

(
y1
y2

)
, A

1
2

(
y3
y4

)〉
H

 = 0
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thus
Re 〈Az, z〉H = −ν2

∫ 1
0
y24(x)dx ≤ 0. (3.7)

We perform similar calculations for operator −A− ν2I

〈(
−A− ν2I

)
z, z

〉
H

= −
〈
A
1
2

(
y3
y4

)
, A

1
2

(
y1
y2

)〉
H

+
〈
A

(
y1
y2

)
,

(
y3
y4

)〉
H

+
〈
B

(
y3
y4

)
,

(
y3
y4

)〉
H

− ν2
〈
A
1
2

(
y1
y2

)
, A

1
2

(
y1
y2

)〉
H

− ν2
〈(

y3
y4

)
,

(
y3
y4

)〉
H

.

Again, we observe that

Re
(
−
〈
A
1
2

(
y3
y4

)
, A

1
2

(
y1
y2

)〉
H

+
〈
A

(
y1
y2

)
,

(
y3
y4

)〉
H

)
= 0,

so

Re
〈(
−A− ν2I

)
z, z

〉
H

= ν2
1∫
0

y24(x)dx− ν2
∥∥∥∥∥A 12

(
y1
y2

)∥∥∥∥∥
2

H

− ν2
1∫
0

y23(x)dx− ν2
1∫
0

y24(x)dx

= −ν2
∥∥∥∥∥A 12

(
y1
y2

)∥∥∥∥∥
2

H

− ν2
1∫
0

y23(x)dx ≤ 0.

This gives us the proof of the following lemma.

Lemma 3.12. Operators A1 and −A1 − ν2I are dissipative.

Lemma 3.10, Corollary 3.11 and Lemma 3.12 allow us to formulate the
following theorem.

Theorem 3.13. Operators A1 and −A1 − ν2I generate contraction semi-
groups. Hence, A1 is the infinitesimal generator of a C0-group.
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Proof. The proof of the first part of the theorem for operators A1 and
−A1 − ν2I is a direct consequence of Lumer-Phillips theorem (see Theo-
rem 1.49). Furthermore, using Phillips theorem (see Theorem 1.50) we know
that (−A1 − ν2I) + ν2I = −A1 generates a semigroup. Thus, the operators
A1 and −A1 generate C0-semigroups which means from Lemma 1.53 that the
operator A1 generate C0-group, what completes the proof of the theorem.

Existence of solution and well-posedness of system (2.8) for i = 1 follows
from Theorem 3.13.

3.4 Asymptotic Stability of the System

Now we are able to prove the following theorem about asymptotic stability
of the considered system.

Theorem 3.14. C0-semigroup T (t) generated by A1 is asymptotically stable.

Proof. Using Theorem 3.6 and Remark 3.7, it is sufficient to show that Reλ <
0 for any λ ∈ σ(A1). The dissipativity of A1 (Lemma 3.12) implies Reλ ≤ 0
for any λ ∈ σ(A1). Hence we need to show that there are no eigenvalues on
the imaginary axis. According to Lemma 3.10, we have 0 /∈ σ(A1).

We consider the following eigenvalue problem

A1


y1(x)
y2(x)
y3(x)
y4(x)

 = λ


y1(x)
y2(x)
y3(x)
y4(x)

 , (3.8)

where (y1(x), y2(x), y3(x), y4(x))T ∈ D(A1) is an eigenvector corresponding
to λ = iµ, µ ∈ R, µ 6= 0. Using the form (3.2) of operator A1, equation (3.8)
reads 

y3(x) = λy1(x),
y4(x) = λy2(x),

y′′1(x) + y′2(x) = λy3(x),
γ2y′′2(x)− y′1(x)− y2(x)− ν2y4(x) = λy4(x),

(3.9)

and using (3.7) we obtain

0 = Reλ
∥∥∥(y1, y2, y3, y4)T ∥∥∥2H = Re〈A1(y1, y2, y3, y4)T , (y1, y2, y3, y4)T 〉H

= −ν2
1∫
0

y24(x)dx ≤ 0.
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Since ν2 > 0, it must be y4(x) ≡ 0. Then from the second equation of (3.9)
we obtain y2(x) ≡ 0. Now our eigenvalue problem (3.9) reads

y3(x) = λy1(x),
y′′1(x) = λ2y1(x),
−y′1(x) = 0.

From the last of these equations we deduce that y1(x) ≡ const and the form
of D(A1) (i.a. y1(0) = 0) implies that y1(x) ≡ 0 and y3(x) ≡ 0. We have
shown that (y1(x), y2(x), y3(x), y4(x))T = 0 which implies that there are no
eigenvalues on the imaginary axis, what finishes the proof.

3.5 General Form of a Spectral Equation

This section is devoted to find a general form of a spectral equation of op-
erator A1. We consider two main cases of physical parameters of the beam,
γ2 > 1 and γ2 = 1, and different values of damping coefficient ν.

At the beginning we prove the following lemma, which helps us in further
considerations.

Lemma 3.15. Let γ2 ≥ 1. Spectral equation P(λ) = 0 of system (2.8) for
i = 1 can be written in the form

P(λ) = (a23(1, λ) + a33(1, λ))a44(1, λ)− (a24(1, λ) + a34(1, λ))a43(1, λ) = 0,

where aij(1, λ) are elements of matrix exponential of

M1(λ) =


0 0 1 0
0 0 0 1
λ2 0 0 −1
0 λ2+ν2λ+1

γ2
1
γ2

0

 .
Proof. We have the following eigenvalue problem

A1


y1(x)
y2(x)
y3(x)
y4(x)

 = λ


y1(x)
y2(x)
y3(x)
y4(x)

 (3.10)

and 
y1(0) = y2(0) = 0,
y′1(1) + y2(1) = 0,

y′2(1) = 0
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for x ∈ (0, 1). Using the form of operator A1, eigenvalue problem (3.10) reads

y3(x) = λy1(x),
y4(x) = λy2(x),

y′′1(x) + y′2(x) = λy3(x),
γ2y′′2(x)− y′1(x)− y2(x)− ν2y4(x) = λy4(x).

Thus, we obtain 
y′′1(x) = λ2y1(x)− y′2(x),

y′′2(x) =
λ2 + ν2λ+ 1

γ2
y2(x) +

1
γ2
y′1(x).

(3.11)

In order to solve system (3.11) we introduce a standard change of variables,

z1 = y1,

z2 = y2,

z3 = y′1,

z4 = y′2,

and put system (3.11) into first-order form,

d

dx


z1
z2
z3
z4

 =


0 0 1 0
0 0 0 1
λ2 0 0 −1
0 λ2+ν2λ+1

γ2
1
γ2

0


︸ ︷︷ ︸

M1(λ)


z1
z2
z3
z4

 (3.12)

with conditions 
z1(0) = z2(0) = 0,
z2(1) + z3(1) = 0,

z4(1) = 0.
(3.13)

The matrix exponential of M1(λ) with respect to x we denote as

eM1(λ)x =


a11(x, λ) a12(x, λ) a13(x, λ) a14(x, λ)
a21(x, λ) a22(x, λ) a23(x, λ) a24(x, λ)
a31(x, λ) a32(x, λ) a33(x, λ) a34(x, λ)
a41(x, λ) a42(x, λ) a43(x, λ) a44(x, λ)

 .
General solution of system (3.12)–(3.13), for initial conditions z1(0, λ) = 0,
z2(0, λ) = 0, z3(0, λ) = γ(λ) and z4(0, λ) = δ(λ), is given by

z1
z2
z3
z4

 = eM1(λ)x


0
0

γ(λ)
δ(λ)

 , (3.14)
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where γ(λ), δ(λ) are unknown functions.
The boundary conditions (3.13) lead to the conditions

C


0
0

γ(λ)
δ(λ)

 = 0,

where

C =


1 0 0 0
0 1 0 0

b31(1, λ) b32(1, λ) b33(1, λ) b34(1, λ)
a41(1, λ) a42(1, λ) a43(1, λ) a44(1, λ)


and

b31(1, λ) = a21(1, λ) + a31(1, λ),
b32(1, λ) = a22(1, λ) + a32(1, λ),
b33(1, λ) = a23(1, λ) + a33(1, λ),
b34(1, λ) = a24(1, λ) + a34(1, λ).

A necessary and sufficient condition for this system to have a nontrivial
solution is that

detC = 0,

which is equivalent to solving

(a23(1, λ) + a33(1, λ)) a44(1, λ)− (a24(1, λ) + a34(1, λ)) a43(1, λ) = 0,

which finishes the proof of Lemma 3.15.

Remark 3.16. Lemma 3.15 is also true for operators A2 and A3, but instead
of matrix exponential of M1(λ) we have to use matrix exponential of M2(λ),
where

M2(λ) =


0 0 1 0
0 0 0 1
λ2

1+µ2λ 0 0 − 1
1+µ2λ

0 λ2+1
γ2

1
γ2

0


or M3(λ), where

M3(λ) =


0 0 1 0
0 0 0 1
λ2

1+µ2λ 0 0 − 1
1+µ2λ

0 λ2+ν2λ+1
γ2

1
γ2

0


respectively.
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3.6 Approximations of a Spectral Equation

Now we find asymptotic formulas for eigenvalues of the operator A1. We
use the asymptotic behavior method described in [34]. The main idea of
this method is to find the roots of an asymptotically approximate spectral
equation. Next, we prove lemma about approximation of roots, i.e., we show
that in a neighborhood of each sufficiently large root of approximate spectral
equation there is at least one root of original spectral equation. In particular,
one can easily see that A1 has only a point spectrum of finite multiplicity.
Furthermore, we show that eigenvectors of operator A1 forms a complete set
in H. Then, using Zwart Theorem (see [75]) we observe that a semigroup
T (t) generated by A1 satisfies the spectrum determined growth condition.

At the beginning we consider the case of γ2 > 1.

Theorem 3.17. Let γ2 > 1. For any value of a damping constant 0 < ν <∞
the eigenvalues of the operator A1 are two asymptotic families λ(1)k = −12ν

2+
γ 2k+12 πi+ ε

(1)
k and λ(2)k = 2k+1

2 πi+ ε
(2)
k , where lim

k→∞
ε
(i)
k = 0.

Proof. We use Lemma 3.15 to determine spectral equation. To use it we need
the following

a23(1, λ) =
1

λ
√
−4γ2 + (λ− λγ2 + ν2)2

(− cosh(σ1(λ)) + cosh(σ2(λ))) ,

a24(1, λ) =
γ
(
−λ+ λγ2 − ν2 +

√
−4γ2 + (λ− λγ2 + ν2)2

)
√

2
√
λ
√
−4γ2 + (λ− λγ2 + ν2)2

· 1√
λ+ λγ2 + ν2 −

√
−4γ2 + (λ− λγ2 + ν2)2

sinh (σ1(λ))

+
γ
(
λ− λγ2 + ν2 +

√
−4γ2 + (λ− λγ2 + ν2)2

)
√

2
√
λ
√
−4γ2 + (λ− λγ2 + ν2)2

· 1√
λ+ λγ2 + ν2 +

√
−4γ2 + (λ− λγ2 + ν2)2

sinh (σ2(λ)) ,

a33(1, λ) =
2 + λ2 − λ2γ2 + λν2 + λ

√
−4γ2 + (λ− λγ2 + ν2)2

2λ
√
−4γ2 + (λ− λγ2 + ν2)2

cosh (σ1(λ))

+
−2− λ2 + λ2γ2 − λν2 + λ

√
−4γ2 + (λ− λγ2 + ν2)2

2λ
√
−4γ2 + (λ− λγ2 + ν2)2
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· cosh (σ2(λ)) ,

a34(1, λ) =
γ

√
λ+ λγ2 + ν2 −

√
−4γ2 + (λ− λγ2 + ν2)2

√
2
√
λ
√
−4γ2 + (λ− λγ2 + ν2)2

sinh (σ1(λ))

−
γ

√
λ+ λγ2 + ν2 +

√
−4γ2 + (λ− λγ2 + ν2)2

√
2
√
λ
√
−4γ2 + (λ− λγ2 + ν2)2

sinh (σ2(λ)) ,

a43(1, λ) = −

√
λ+ λγ2 + ν2 −

√
−4γ2 + (λ− λγ2 + ν2)2

√
2
√
λγ
√
−4γ2 + (λ− λγ2 + ν2)2

sinh (σ1(λ))

+

√
λ+ λγ2 + ν2 +

√
−4γ2 + (λ− λγ2 + ν2)2

√
2
√
λγ
√
−4γ2 + (λ− λγ2 + ν2)2

sinh (σ2(λ))

a44(1, λ) =
−λ+ λγ2 − ν2 +

√
−4γ2 + (λ− λγ2 + ν2)2

2
√
−4γ2 + (λ− λγ2 + ν2)2

cosh (σ1(λ))

+
λ− λγ2 + ν2 +

√
−4γ2 + (λ− λγ2 + ν2)2

2
√
−4γ2 + (λ− λγ2 + ν2)2

cosh (σ2(λ)) ,

where 
σ1(λ) =

√
λ

√
λ+ λγ2 + ν2 −

√
−4γ2 + (λ− λγ2 + ν2)2
√

2γ
,

σ2(λ) =

√
λ

√
λ+ λγ2 + ν2 +

√
−4γ2 + (λ− λγ2 + ν2)2
√

2γ
.

Now we can consider spectral equation P(λ) = 0, with

P(λ) = σ3(λ) + σ4(λ) cosh(σ1(λ)) cosh(σ2(λ))
+ σ5(λ) sinh(σ1(λ)) sinh(σ2(λ)),

(3.15)
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where 

σ3(λ) =
2γ2

(2γ − λ+ λγ2 − ν2)(2γ + λ− λγ2 + ν2)
,

σ4(λ) =
2γ2 − (λ− λγ2 + ν2)2

(2γ − λ+ λγ2 − ν2)(2γ + λ− λγ2 + ν2)
,

σ5(λ) =
2γ2(λ+ λγ2 + ν2)

(2γ − λ+ λγ2 − ν2)(2γ + λ− λγ2 + ν2)

· 1√
(λ+ λγ2 + ν2)2 −

(
−4γ2 + (λ− λγ2 + ν2)2

) .
To determine location of eigenvalues, it is sufficient to solve spectral equation
P(λ) = 0. As one can see, solving this equation is nontrivial, we will use
asymptotic behavior method from [34]. Then, for sufficiently large |λ|, we
obtain

σ1(λ) =
1
γ
λ+

1
2γ
ν2 +

(
γ

2(−1 + γ2)
− ν4

2γ

)
1
λ

+ ϕ1

( 1
λ2

)
,

σ2(λ) = λ− 1
2(−1 + γ2)

1
λ

+ ϕ2

( 1
λ2

)
,

σ3(λ) = − 2γ2

(−1 + γ2)2
1
λ2
− 4γ2ν2

(−1 + γ2)3
1
λ3

+ ϕ3

( 1
λ4

)
,

σ4(λ) = 1 +
2γ2

(−1 + γ2)2
1
λ2

+
4γ2ν2

(−1 + γ2)3
1
λ3

+ ϕ4

( 1
λ4

)
,

σ5(λ) = − γ(1 + γ2)
(−1 + γ2)2

1
λ2

+
γ(−3− 6γ2 + γ4)ν2

2(−1 + γ2)3
1
λ3

+ ϕ5

( 1
λ4

)
,

where each ϕi(·) is an analytic function in a neighborhood of 0 with

lim
|λ|→∞

ϕi

(1
λ

)
= 0.

Hence we can define asymptotic approximations of σi’s as |λ| → ∞ in the
form 

σ̃1(λ) =
1
γ
λ+

1
2γ
ν2,

σ̃2(λ) = λ,

σ̃3(λ) = 0,
σ̃4(λ) = 1,

σ̃5(λ) = −γ(1 + γ2)
(1 + γ2)2

1
λ2
.
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Now we consider an approximate equation of the form

cosh
(

1
γ
λ+

1
2γ
ν2
)

cosh (λ)− γ(1 + γ2)
(1 + γ2)2

1
λ2

sinh
(

1
γ
λ+

1
2γ
ν2
)

sinh (λ) = 0.

After small calculations we can rewrite it as another approximate equation
(see Lemma 3.18)

cosh
(

1
γ
λ+

1
2γ
ν2
)

cosh (λ) = 0. (3.16)

We observe that (3.16) is true, when

cosh
(

1
γ
λ+

1
2γ
ν2
)

= 0 (3.17)

or
cosh (λ) = 0. (3.18)

Let 1
γ
λ+ 1

2γν
2 = iτ , then (3.17) is transferred into

cos(τ) = 0,

which has a sequence (τk) of solutions of the form

τk =
2k + 1

2
π.

Thus
λ̃
(1)
k = −1

2
ν2 + γ

2k + 1
2

πi.

Now we do a similar change of variable (λ = iτ) and solve equation (3.18)

cosh(iτ) = 0,

so
λ̃
(2)
k =

2k + 1
2

πi.

Hence, solution of (3.16) consist of two families, λ̃(1)k and λ̃
(2)
k , where

λ̃
(1)
k = −1

2
ν2 + γ

2k + 1
2

πi, λ̃
(2)
k =

2k + 1
2

πi as k →∞.

(see Fig. 3.4).
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Figure 3.4: Eigenvalues in the case γ = 2 and ν = 1 (black circles denote
eigenvalues λk, red crosses denote approximations of eigenvalues λ̃k)

The following lemma shows that in a neighborhood of each sufficiently
large root of (3.16) there exist at least one root of (3.15) (compare Theorem
3.1, p. 81 in [34]).

Lemma 3.18. For every δ > 0 there exist M > 0 such that if λ̃ > M is a
root of (3.16), then there exist a root λ0 of (3.15) with

∣∣∣λ̃− λ0∣∣∣ < δ.

Proof. At the beginning we rewrite (3.15) in the form

cosh(σ1(λ)) cosh(σ2(λ)) = ε(λ), (3.19)

where
ε(λ) =

1
σ4(λ)

(−σ3(λ)− σ5(λ) sinh(σ1(λ)) sinh(σ2(λ)))

with
lim
|λ|→∞

ε(λ) = 0.

Let λ̃ > M be a root of (3.16) which is unique in the neighborhood |λ−λ̃| < δ.
Then there exists ∆ > 0 (not depending on M) such that the values of
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|cosh (σ̃2(λ)) cosh (σ̃2λ)| cover the whole interval [0,∆] as
∣∣∣λ− λ̃∣∣∣ < δ. If

in addition M is large enough, this implies that (3.19) has a root λ0 ∈{
λ :

∣∣∣λ− λ̃∣∣∣ < δ
}

.

Corollary 3.19. Eigensystem of operator A1 forms a complete set in H.

Proof. From (3.14) we can infer that the eigenvectors corresponding to the
eigenvalue λ can be approximated as


ỹ1(x)
ỹ2(x)
ỹ3(x)
ỹ4(x)

 =


− γ

(γ2−1)2λ3 sinh
(
λ
γ
x
)

+ 1
λ

sinh (λx)
1

(γ2−1)2
[
− cosh

(
λ
γ
x
)

+ cosh (λx)
]

− γ

(γ2−1)2λ2 sinh
(
λ
γ
x
)

+ sinh (λx)
λ

(γ2−1)2
[
− cosh

(
λ
γ
x
)

+ cosh (λx)
]

 γ(λ)

+



γ2

(γ2−1)λ2
[
cosh

(
λ
γ
x
)
− cosh (λx)

]
γ
λ

sinh
(
λ
γ
x
)
− γ2

(γ2−1)2λ3 sinh(λx)
γ2

(γ2−1)λ

[
cosh

(
λ
γ
x
)
− cosh (λx)

]
γ sinh

(
λ
γ
x
)
− γ2

(γ2−1)2λ2 sinh(λx)

 δ(λ)

which together with Lemma 3.18 implies the thesis (cf. [3]).

Now we proceed with the particular case of γ = 1.

Theorem 3.20. Let γ = 1. For any value of a damping constant 0 < ν <∞
the operator A1 has the eigenvalues of the following form

λ
(1)
k = −1

4
ν2 +

1
2

ln(y −
√
y2 − 1) +

2k + 1
2

πi+ ε
(1)
k ,

λ
(2)
k = −1

4
ν2 +

1
2

ln(y +
√
y2 − 1) +

2k + 1
2

πi+ ε
(2)
k ,

where lim
k→∞

ε
(i)
k = 0, and y = y(ν) is given by

y =
ν4 cosh

(√
ν4−4
2

)
− 4

ν4 − 4
. (3.20)

Proof. We use Lemma 3.15 to determine spectral equation. We compute the
following

a23(1, λ) = − 1
λ
√
−4 + ν4

cosh (σ1(λ)) +
1

λ
√
−4 + ν4

cosh (σ2(λ)) ,
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a24(1, λ) =
−ν2 +

√
−4 + ν4

√
2
√
−4 + ν4

√
λ
(
2λ+ ν2 −

√
−4 + ν4

) sinh(σ1(λ))

+
ν2 +

√
−4 + ν4

√
2
√
−4 + ν4

√
λ
(
2λ+ ν2 +

√
−4 + ν4

) sinh(σ2(λ)),

a33(1, λ) =
2 + λ

(
ν2 +

√
−4 + ν4

)
2λ
√
−4 + ν4

cosh(σ1(λ))

+
−2 + λ

(
−ν2 +

√
−4 + ν4

)
2λ
√
−4 + ν4

cosh(σ2(λ)),

a34(1, λ) =

√
λ
(
2λ+ ν2 −

√
−4 + ν4

)
√

2λ
√
−4 + ν4

sinh(σ1(λ))

−

√
λ
(
2λ+ ν2 +

√
−4 + ν4

)
√

2λ
√
−4 + ν4

sinh(σ2(λ)),

a43(1, λ) = −

√
λ
(
2λ+ ν2 −

√
−4 + ν4

)
√

2λ
√
−4 + ν4

sinh(σ1(λ))

+

√
λ
(
2λ+ ν2 +

√
−4 + ν4

)
√

2λ
√
−4 + ν4

sinh(σ2(λ)),

a44(1, λ) =
−ν2 +

√
−4 + ν4

2
√
−4 + ν4

cosh(σ1(λ)) +
ν2 +

√
−4 + ν4

2
√
−4 + ν4

cosh(σ1(λ)),

Now we consider spectral equation P(λ) = 0, that is

P(λ) = − 2
−4 + ν4

+
−2 + ν4

−4 + ν4
cosh(σ1(λ)) cosh(σ2(λ))

+ σ5 sinh(σ1(λ)) sinh(σ2(λ)),

where

σ1(λ) =

√
λ
√

2λ+ ν2 −
√
−4 + ν4√

2
,

σ2(λ) =

√
λ
√

2λ+ ν2 +
√
−4 + ν4√

2
,

σ5(λ) = −
(2λ+ ν2)

√
2λ+ ν2 −

√
−4 + ν4

√
2λ+ ν2 +

√
−4 + ν4

2(−4 + ν4)(1 + λ2 + λν2)
.
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Note that for ν = 0 our results coincide with those from [63]. To find eigen-
values of A1 it is sufficient to solve equation

− 2
−4 + ν4

+
−2 + ν4

−4 + ν4
cosh(σ1) cosh(σ2) + σ5 sinh(σ1) sinh(σ2) = 0.

Proceeding similar as in previous theorem, for sufficiently large |λ| we obtain

σ1(λ) = λ+
1
4

(ν2 −
√
−4 + ν4)− 1

32
(ν2 −

√
−4 + ν4)2

1
λ

+ ϕ1(
1
λ2

),

σ2(λ) = λ+
1
4

(ν2 +
√
−4 + ν4)− 1

32
(ν2 +

√
−4 + ν4)2

1
λ

+ ϕ2(
1
λ2

),

σ5(λ) = − 2
−4 + ν4

− 1
4λ2

+ ϕ5(
1
λ3

),

where ϕi(·) is analytic function in a neighborhood of 0 with

lim
|λ|→∞

ϕi

(1
λ

)
= 0.

Hence we can define asymptotic approximations of σi’s as |λ| → ∞ in the
form 

σ̃1(λ) = λ+
1
4

(ν2 −
√
−4 + ν4),

σ̃2(λ) = λ+
1
4

(ν2 +
√
−4 + ν4),

σ̃5(λ) = − 2
−4 + ν4

.

Now we can consider an approximate equation, in the form

− 2
−4 + ν4

+
−2 + ν4

−4 + ν4
cosh

(
λ+

1
4

(ν2 −
√
−4 + ν4)

)
cosh

(
λ+

1
4

(ν2 −
√
−4 + ν4)

)
− 2
−4 + ν4

sinh
(
λ+

1
4

(ν2 −
√
−4 + ν4)

)
sinh

(
λ+

1
4

(ν2 −
√
−4 + ν4)

)
= 0.

After small calculation we can rewrite it equivalently as

cosh
(

2λ+
1
2
ν2
)

=
4− ν4 cosh

(√
ν4−4
2

)
ν4 − 4

, (3.21)
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for ν ∈ (0,+∞)\
√

2 (for the ν =
√

2 considerations are similar). Closer
analysis of right-hand side of (3.21) shows that for ν ∈ (0,

√
2) we have

4− ν4 cos
(√
4−ν4
2

)
ν4 − 4

< −1

and for ν >
√

2
4− ν4 cosh

(√
ν4−4
2

)
ν4 − 4

< −1

Thus, eigenvalues for ν 6=
√

2 are given by

λ̃ = −1
4
ν2 +

1
2

cosh−1
4− ν4 cosh

(√
ν4−4
2

)
ν4 − 4

 ,
or equivalently as

λ̃(1) = −1
4
ν2 +

1
2

ln(−y +
√
y2 − 1),

λ̃(2) = −1
4
ν2 +

1
2

ln(−y −
√
y2 − 1),

where y is given by (3.20) and y > 1. Therefore, we obtain two families of
points

λ̃
(1)
k = −1

4
ν2 +

1
2

ln(y −
√
y2 − 1) +

2k + 1
2

πi,

λ̃
(2)
k = −1

4
ν2 +

1
2

ln(y +
√
y2 − 1) +

2k + 1
2

πi

(see Fig. 3.5).

Remark 3.21. Note that the results for γ = 1 are qualitatively different than
the results for γ2 > 1. The main difference is in the asymptotic behavior of
σ’s. Let us for example consider the following expression

σ1

(1
s

)
− 1
γ

1
s

=
4ν2 1

s
(−1 + γ2) + 4γ2(√

1 + γ2 + ν2s−
√
−4γ2s2 + (1− γ2 + ν2s)2 +

√
2
)

· 1
√

2γ
(
−1
s

+ 1
s
γ2 + ν2 +

√
−4γ2 +

(
1
s
− 1

s
γ2 + ν2

)2) ,
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Figure 3.5: Eigenvalues in the case γ = 1 and ν = 1 (black circles denote
eigenvalues λk, red crosses denote approximations of eigenvalues λ̃k)

where
s =

1
λ
.

If we calculate the limit at infinity of this expression, we will get

lim
|s|→∞

(
σ1

(1
s

)
− 1
γ

1
s

)
=

1
2γ
ν2,

but if we first assume γ = 1 then terms with the highest order cancel and we
obtain significantly different asymptotic behavior, that is

σ1

(1
s

)
− 1
γ

1
s

=
4

√
2
(√

2 + ν2s−
√
−4s+ ν4s2 +

√
2
)

· 1(
ν2 +

√
−4 + ν4

)
and

lim
|s|→∞

(
σ1

(1
s

)
− 1
γ

1
s

)
=

1
4

(
ν2 −

√
−4 + ν4

)
.
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To complete considerations with γ2 ≥ 1, we examine the limit case ν =∞.
Remind that for any ν > 0, we have ẅ(x, t)− w′′(x, t)− ξ′(x, t) = −u(t)(r + x),

ξ̈(x, t)− γ2ξ′′(x, t) + w′(x, t) + ξ(x, t) + ν2ξ̇(x, t) = u(t),

for x ∈ (0, 1) and t > 0 with boundary conditions (2.4). Dividing the second
of these equations by ν2 and passing with ν →∞, we obtainẅ(x, t)− w′′(x, t)− ξ′(x, t) = −u(t)(r + x),

ξ̇(x, t) = 0,
(3.22)

for x ∈ (0, 1) and t > 0 with boundary conditions (2.4). Now we rewrite
system (3.22) in operator equation form

ẇ

ξ̇
ẅ

ξ̈

 = A∞


w
ξ
ẇ

ξ̇

+


0
0

−r − x
0

u(t),

where

A∞


y1
y2
y3
y4

 =


y3
0

y′′1 + y′2
0

 ,
with D(A∞) = D(A1).

We arrive at

Theorem 3.22. For infinite value of a damping coefficient ν =∞ eigenval-
ues are λ ∈

{
2k+1
2 πi : k ∈ Z

}
∪ {0}, thus the system is unstable.

We skip the proof. Note that the behavior of the system in the case of
ν =∞ is the same in both γ = 1 and γ2 > 1 situations.

The form of the spectrum in all considered cases allows us to formulate
the following corollary.

Corollary 3.23. For any value of a damping constant 0 < ν <∞ spectrum
σ(A1) consists of isolated single eigenvalues of A1.

Now we can observe that the semigroup satisfies spectrum determined
growth condition.

Corollary 3.24. Taking into account information from Section 3.3, Corol-
lary 3.19 and Theorem 1.60 we can observe that A1 is a Riesz-spectral opera-
tor (see Definition 1.61), which means that the spectrum determined growth
condition is satisfied (see Theorem 1.62.d)).
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Figure 3.6: Eigenvalues in the limit case γ ≥ 1 and ν = ∞ (black circles
denote eigenvalues λk)

3.7 Optimal Decay Rate Analysis

In a typical situation (in both cases of finite- and infinite-dimensional sys-
tems) we can observe the following behavior of the system: increasing of a
damping coefficient (e.g. friction) causes faster energy dissipation for small
values (underdamping), then we reach optimal damping coefficient, when
the energy dissipates in the fastest way, and for larger damping coefficients
than the optimal the energy dissipation is slower (overdamping). In Fig.
3.7 we present plots of the stability margin of damped spring-mass system
(ẍ + dẋ + x = 0) and damped string (ü − u′′ + du̇ = 0). In our case we will
see a similar situation, although the graph will have no wedges.

Finding supremum of the spectrum of operator A1 gives us information
about growth bound of a semigroup and allows us to calculate stability mar-
gin. In some cases we are able to find optimal damping coefficient as defined
below.

Definition 3.25. The damping coefficient ν0 will be called optimal , if system
(2.8) with ν = ν0 admits the fastest possible energy dissipation, that is if ν0
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Figure 3.7: Stability margin of damped spring-mass system (left) and damped
string (right)

maximizes the stability margin of the system.

In the case of γ2 > 1 there is no reason to consider finding the optimal
damping coefficient, even on selected subspaces, as one family stays on the
imaginary axis and another one escapes to left infinity with increase of the
damping coefficient (see Fig. 3.8).
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Re(λ)

Re(λ
˜
k
(1)
)

Re(λ
˜
k
(2)
)

Figure 3.8: Plots of Re
(
λ̃
(1)
k

)
(solid line) and Re

(
λ̃
(2)
k

)
(dashed line) for γ2 > 1

Corollary 3.26. Including damping effect to a Timoshenko beam model
caused a partial exponential stability, because only one family, {λ(1)k }∞k=k0 , is
located on left side of complex plane, while second family, {λ(2)k }∞k=k0 , is still
close to imaginary axis Reλ = 0.
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Remark 3.27. Corollary 3.24 shows that the system satisfies spectrum de-
termined growth condition. We proved that the imaginary axis is the asymp-
tote of the spectrum of A for γ2 > 1 (Theorem 3.17), this implies that the
system is not exponentially stable in this case.
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)

Figure 3.9: Plot of Re
(
λ̃
(1)
k

)
in the case γ = 1
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Figure 3.10: Plot of Re
(
λ̃
(2)
k

)
in the case γ = 1

In the case of γ = 1 we prove that there exists the optimal damping coef-
ficient for which energy dissipates in the fastest way. Increasing of a damping
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coefficient ν caused that the first family is moving away from imaginary axis
(see Fig. 3.9), while for the second family there exists the optimal damping
coefficient (see Fig. 3.10). Increasing ν above the optimal value causes slower
energy dissipation (overdamping).

0.5 1.0 1.5 2.0 2.5 3.0
τ

-0.4

-0.2

0.2

0.4

0.6

Numerator f ′ (τ)

Figure 3.11: Plot of a numerator part of f ′(τ) with marked solution of a
f ′(τ) = 0

We are able to determine optimal decay ratio of the system in question.

Corollary 3.28. The optimal decay ratio of damped slowly rotating Timo-
shenko beam (under assumption γ = 1) is ω0 = −0.03324163912497735136
(for νopt = 2.54189087636624306026).

Proof. From Theorem 3.20 we can observe that

Re
(
λ̃
(1)
k

)
< Re

(
λ̃
(2)
k

)
,

i.e.
−1

4
ν2 +

1
2

ln(y −
√
y2 − 1) < −1

4
ν2 +

1
2

ln(y +
√
y2 − 1).

Let us introduce

f(ν) = Re
(
λ̃
(2)
k

)
= −1

4
ν2 +

1
2

ln
(
y +

√
y2 − 1

)
,
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Figure 3.12: Stability margin with an optimal damping coefficient marked in
the case γ = 1

where y is given by (3.20). We need to find minimum of f(ν), to this end we
solve equation f ′(ν) = 0. At the beginning we substitute τ =

√
ν4−4
2 > 0 and

obtain

f(τ) = −1
2

√
τ 2 + 1

+
1
2

ln

(τ 2 + 1) cosh(τ)− 1
τ 2

+

√√√√((τ 2 + 1) cosh(τ)− 1
τ 2

)2
− 1

 .
Thus, derivative with respect to τ is given by

f ′(τ) =
f ′n(τ)
f ′d(τ)

,

where

f ′n(τ) =
(
τ 3 + τ

)
sinh(τ)− τ 2

√
(cosh(τ)− 1) (τ 2 + (τ 2 + 1) cosh(τ)− 1)

− 2 cosh(τ) + 2,

f ′d(τ) = 2τ 3
√

((τ 2 + 1) cosh(τ)− 1)2

τ 4
− 1.
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Note that the solution1 of a numerator part of a f ′(τ) = 0 is approxi-
mately equal to τopt = 3.07193850360174816424 (see Fig. 3.11), leading to
νopt = 4

√
4τ 2opt + 4 ≈ 2.54189087636624306026.

Observe that the minimum of a real part of λ(2) family is −0.033241639
12497735136 for ν = νopt. Thus, by Definition 3.25, we see that the optimal
damping coefficient is νopt, resulting in the optimal decay rate, and for ν >
νopt we observe an overdamping effect.

Comparing those results according to Definition 3.2, we can plot stability
margin dependence on the damping coefficient ν (see Fig 3.12).
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Figure 3.13: Eigenvalues in the case γ = 1 and µ = 1 (only family λ(2)k shown)

1Numerical analysis conducted using Wolfram Mathematica 10.
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3.8 Comparison with Other Damping
Systems

Analysis of spectrum of operator A1 in the case described in Section 3.6
and 3.7 shows that for physical parameter γ2 > 1 one family of eigenvalues
is asymptotically close to imaginary axis, thus no stability margin may be
expected. Therefore, in the further analysis we will omit cases where γ2 > 1
and we will analyze only those with γ = 1.
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Figure 3.14: Eigenvalues in the case γ = 1 and µ = 1, ν = 1 (only family λ(2)k
shown)

In the following theorem we find approximations of eigenvalues of the
operator A2, i.e. the operator of motion of Timoshenko beam with damping
operator B2 defined by (2.10).

Theorem 3.29. Let γ = 1. For any value of a damping constant 0 <
µ < ∞ the eigenvalues of operator A2 form two asymptotic families λ(1)k =

−ν2
(
2k+1
2 π

)2
+ ε
(1)
k and λ

(2)
k = 2k+1

2 πi + ε
(2)
k , where lim

k→∞
ε
(i)
k = 0 (see Fig.

3.13).
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Corollary 3.30. From Theorem 3.29, we can observe that the imaginary
axis is an asymptote of the spectrum of A2. In this case stability margin is
equal to 0, so there is no reason to consider optimal stability margin.

To complete our consideration with γ = 1, we examine the case with
additive combination of damping operators (2.9) and (2.10), i.e. damping
operator (2.11).

Theorem 3.31. Let γ = 1. For any value of a damping constant 0 < µ, ν <
∞ the eigenvalues of operator A3 consist of two asymptotic families λ(1)k =

−µ2
(
2k+1
2 π

)2
+ ε
(1)
k and λ(2)k = −12ν

2+ 2k+1
2 πi+ ε

(2)
k , where lim

k→∞
ε
(i)
k = 0 (see

Fig. 3.14).

Corollary 3.32. From Theorem 3.31, we can see that asymptote of the

spectrum of A3 is given by min
{
µ2
(
2k+1
2 π

)2
, 12ν

2
}

. There is no reason of

looking for optimal stability margin here because stability margin of the
system goes to infinity as damping coefficients go to infinity.
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Chapter 4

Observability Analysis

Another important concept in control theory is observability. Observability
is a property of the control system that allows to check whether it is possible
to determine the internal state of an object based on the knowledge of input
(control) and output (observation).

In this chapter we consider the problem of exact observability of a general
class of distributed parameter systems in Hilbert spaces. We show that under
some conditions on asymptotic behavior of the spectrum of the differential
operator the system is not exactly observable in default topologies, and we
find a stronger topology for state observation for which the system becomes
exactly observable. We illustrate this result with a vibrating clamped–free
Timoshenko beam model.

Main results of this chapter were published in [54].

4.1 Various Concepts of Observablity

There can be distinguished three important observability notions mostly used
in literature. In this section we introduce and briefly discuss them.

Let A : D(A) ⊂ H → H is unbounded, positive definite linear operator.
Consider differential equation with observation of the form{

ż(t) = Az(t),
y(t) = Cz(t),

(4.1)

where z(t) = (v(t), w(t))T , v, w ∈ H, A is the infinitesimal generator of a
C0-semigroup T (t) given in the product space1 H = D

(
A
1
2

)
×H and defined

1Operator A
1
2 is defined as in Section 2.2
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by

A
(
v
w

)
=
(

0 I
−A 0

)(
v
w

)
,

where I : D
(
A
1
2

)
→ H is embedding operator, with domain D(A) = D(A)×

D
(
A
1
2

)
⊂ H, and C : H → C is a linear (unbounded) observation operator.

In addition, we assume that observation operator is admissible, in the
following sense

Definition 4.1. The operator C is called an admissible operator for semi-
group T (t) if, for some T > 0 (and hence for all T > 0), there exists a
constant K ≥ 0 such that

T∫
0

|CT (t)z0|2 dt ≤ K2 ‖z0‖2 ∀z0 ∈ D (A) .

We use the following classical notions of observability for unbounded op-
erators.

Definition 4.2. Let K : H → Y be the output operator

z0 7→ Kz0 = CT (t)z0,

where Y is a Hilbert space of time-dependent functions on the interval (0, T ).
The system (4.1) (or the pair (A, C)) is said to be approximately observable
in time T (or observable in time T ) if kerK = {0}, final state observable in
time T if

‖Kz0‖2Y ≥ κ2 ‖T (T )z0‖2H ∀z0 ∈ H,
for some constant κ > 0 and Y −H exactly observable in time T (or Y −H
continuously observable in time T ) if

‖Kz0‖2Y ≥ κ2 ‖z0‖2H ∀z0 ∈ H, (4.2)

for some constant κ > 0.

For finite-dimensional systems there is one concept of observability (the
concepts from Definition 4.2 are equivalent), which is independent of time.
In this case, the observability can be checked by Kalman rank condition
(see [60]).

Theorem 4.3. The pair (A, C) is observable if and only if

rank


C
CA

...
CAn−1

 = n.
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The concept of observability becomes much more complicated if we pass
from finite- to infinite-dimensional state space. Briefly speaking approximate
observability guarantees possibility of reconstruction of initial state of the
system and, in consequence, of a whole trajectory, using knowledge of the
output. Exact observability and final state observability mean that we can
find the initial and final state respectively from the given output with in-
finitesimal precision, that is for any convergent sequence of pairwise different
initial (final) states the resulting outputs are convergent and pairwise differ-
ent as well. Of course exact observability implies both approximate observ-
ability and final state observability, but not the other way around [60]. In
this chapter we focus on analysis of exact observability notion.

The exact observability depends heavily on the choice of topology in the
space as opposed to approximate observability [44]. We will prove that in de-
fault topologies setting the considered system (4.1) is not exactly observable
under some specific conditions. There are two possible methods to overcome
this problem for further studies of exact observability of system (4.1), we
can use the weaker topology on the right-hand side of the inequality (4.2)
or stronger topology on the left-hand side of the inequality (4.2). Usually
the first approach is taken (see e.g. [60]) using the domain D(A) of operator
A or of its power D(An) as a space of initial states to be observed, that is
changing the right-hand side of the inequality (4.2). We are going to use the
second approach in our research, i.e. find stronger topology on the left-hand
side of the inequality (4.2). Our investigation will be based on the moment
problem approach.

The moment problem method is known as one of the most powerful tools
in modern control systems theory. Starting from the works of N. Krasovskii
[36], D. Russell [47], H. Fattorini [15] and others, many papers are devoted to
research of the controllability problem using the moment problem approach.
The main advantage is the use of profound results of complex functions the-
ory, allowing to solve the problems that seemed for many years to be very
hard to analyze. One of such problems is exact observability problem for infi-
nite dimensional systems, that is the exact description of observable states. It
turned out that in many cases the solution of this problem can be obtained
using the results of Riesz basis properties of exponential families (see [3]
and references within). Another example is the problem of time-optimality
for systems of arbitrary dimensions, that was solved [30, 31] using classical
Markov moment problem approach (M. G. Krein, A. A. Nudelman [37]).
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4.2 Exact Observability Conditions

In this section, we present general exact observability analysis of system
(4.1). At the beginning, we note that system (4.1) is a general form of second
order system its observability results will depend strongly on the spectral
analysis of the operators in question: location of the spectrum and properties
of eigensystems. Thus we formulate some specific assumptions we impose on
the system in question:

(A1) The operator A has an orthogonal complete sequence of eigenelements
{Yk}k∈Z with corresponding eigenvalues µk = ±i

√
λk, where2 λk � k2

denotes an increasing sequence of (real, positive) eigenvalues of operator
A.

(A2) There exists an increasing sequence {kn}n∈Z of indices such that eigen-
values µkn and µkn−1 are approaching each other with a certain speed,
|µkn − µkn−1| � 1

|kn| .

(A3) For some T0 > 0 the system

{
eµkt

}
k∈Z\{kn}

∪
{
eµkt − eµk−1t

µk − µk−1

}
k∈{kn}

(4.3)

is a Riesz basis for L2 (0, T0).

(A4) |Ck| � 1, where Ck := CYk, when the sequence of norms of eigenvectors
Yk is almost k-normalized, that is asymptotically bounded from below
and above by |k|, as |k| → ∞, i.e. ‖Yk‖H � |k|.

We start our considerations with a simple remark concerning approximate
observability notion.

Proposition 4.4. The system (4.1) under conditions (A1) and (A3) is ap-
proximately observable for T ≥ T0 and is not approximately observable for
T < T0.

Corollary 4.5. Since exact observability implies approximate observability
and lack of approximate observability implies lack of exact observality, then
exact observability phenomenon of system (4.1) can appear only for intervals
with final times T ≥ T0.
2αk � βk iff |αk| ≤ C |βk| and |βk| ≤ C |αk| for some C and for sufficiently large k,

see [17, p. 442]
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Next, we proceed with exact observability notion analysis, namely we
show lack of exact observability in the default topologies setting.

Theorem 4.6. Assume that the conditions (A1) and (A4) hold. Then the
system (4.1) is not L2 (0, T )−H exactly observable in any time T > 0.

Proof. Consider sequence {Yk}k∈Z to be observed. We have

KYk = CT (t)Yk = CeµktYk = eµktCk

for any t > 0. Thus,

‖KYk‖2L2(0,T ) =
T∫
0

∣∣∣eµktCk∣∣∣2 dt = |Ck|2T � 1,

because µk ∈ iR (see (A1)) and |Ck| � 1 (see (A4)). On the other hand, by
(A4),

‖Yk‖H � |k|.

Then
‖KYk‖L2(0,T )
‖Yk‖H

→ 0 as |k| → ∞.

Thus, inequality (4.2) cannot hold, hence the system (4.1) is not L2 (0, T )−H
exactly observable in any time T > 0, which finishes the proof.

Now, we are ready to proceed with the main result of the section. We
prove that for T ≥ T0 the condtitions (A1)–(A4) imply exact observability in
time T of system (4.1) after strengthening one of the topologies in question,
namely replacing Y = L2 (0, T ) by Y = H2 (0, T ).

Theorem 4.7. Assume that the conditions (A1)–(A4) are satisfied. Let T ≥
T0. Then system (4.1) is H2 (0, T )−H exactly observable in time T .

Proof. Let T = T0, for T > T0 exact observability will be obvious. At the
beginning we will estimate the norm of the left-hand side of inequality (4.2),
‖Kz0‖2H2(0,T0). In order to do this, we present state vector in eigenvector space
(A1) and then we decompose it in Riesz basis (4.3) from (A3). The arbitrary
state z0 ∈ H may be written in the normalized eigenvector space in the
following form

z0 =
∑
k∈Z

αk
Yk
‖Yk‖

, (4.4)
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where αk =
〈
z0,

Yk
‖Yk‖

〉
∈ `2 and Yk is an eigenvector from (A1). Then, after

using the form of the operator K, we obtain

Kz0 = CT (t)z0 =
∑
k∈Z

αke
µkt

Ck
‖Yk‖

.

Now, we decompose it in Riesz basis (4.3)

∑
k∈Z

αke
µkt

Ck
‖Yk‖

=
∑

k∈Z\{kn}
βke

µkt +
∑

k∈{kn}
γk
eµkt − eµk−1t

µk − µk−1
, (4.5)

where coefficients in Riesz basis are given by the following formulas

βk =
Ck
‖Yk‖

αk for k 6= kn − 1, kn

and

βkn−1 =
Ckn
‖Ykn‖

αkn +
Ckn−1
‖Ykn−1‖

αkn−1,

γkn = (µkn − µkn−1)
Ckn−1
‖Ykn−1‖

αkn−1

for remaining cases. Now, we proceed with estimation of left-hand side of the
inequality (4.2). We change the topology of the space and use stronger norm,
i.e. H2(0, T0) norm. Hence, the norm of Kz0 is calculated as

‖CT (t)z0‖2H2(0,T0) = ‖CT (t)z0‖2L2(0,T0) +

∥∥∥∥∥ d2dt2 (CT (t)z0)

∥∥∥∥∥
2

L2(0,T0)

. (4.6)

In general if family {ϕk} is a Riesz basis then there exist constants m,M > 0
such that for any sequence (xk) ∈ `2 one has

m
∑
|xk|2 ≤

∥∥∥∑xkϕk
∥∥∥2 ≤M

∑
|xk|2 (4.7)

(see Remark 1.59). Using (4.5) and (4.7), the estimation for the first term of
(4.6) is given by

‖CT (t)z0‖2L2(0,T0) ≥ m

 ∑
k∈Z\{kn}

|βk|2 +
∑

k∈{kn}
|γk|2

 . (4.8)
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We present necessary calculations for the second term of (4.6), namely

d2

dt2
(CT (t)z0) =

∑
k∈Z\{kn}

µ2kβke
µkt +

∑
k∈{kn}

γk
µ2ke

µkt − µ2k−1eµk−1t

µk − µk−1

=
∑

k∈Z\{kn}
µ2kβke

µkt +
∑

k∈{kn}
(µk + µk−1) γkeµkt

+
∑

k∈{kn}
µ2k−1γk

eµkt − eµk−1t

µk − µk−1
.

After rearranging the terms, we obtain

d2

dt2
(CT (t)z0) =

∑
k∈Z\{kn−1,kn}

µ2kβke
µkt

+
∑

k∈{kn−1}

(
µ2kβk + (µk+1 + µk) γk+1

)
eµkt

+
∑

k∈{kn}
µ2kγk

eµkt − eµk−1t

µk − µk−1
.

Again, using the properties of Riesz basis (4.7), we obtain

∥∥∥∥∥ d2dt2 (CT (t)z0)

∥∥∥∥∥
2

L2

≥ m

 ∑
k∈Z\{kn−1,kn}

∣∣∣µ2kβk∣∣∣2
+

∑
k∈{kn−1}

∣∣∣µ2kβk + (µk+1 + µk) γk+1
∣∣∣2

+
∑

k∈{kn}

∣∣∣µ2kγk∣∣∣2
 .

(4.9)

Combining (4.8) and (4.9) we obtain estimation from below for (4.6), namely

‖CT (t)z0‖2H2 ≥ m

 ∑
k∈Z\{kn}

|βk|2 +
∑

k∈{kn}
|γk|2


+m

 ∑
k∈Z\{kn−1,kn}

∣∣∣µ2kβk∣∣∣2

+
∑

k∈{kn−1}

∣∣∣µ2kβk + (µk+1 + µk) γk+1
∣∣∣2 +

∑
k∈{kn}

∣∣∣µ2kγk∣∣∣2
 ,
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in particular

‖CT (t)z0‖2H2 ≥ m

 ∑
k∈Z\{kn−1,kn}

∣∣∣µ2kβk∣∣∣2
+

∑
k∈{kn−1}

∣∣∣µ2kβk + (µk+1 + µk) γk+1
∣∣∣2

+
∑

k∈{kn}

∣∣∣µ2kγk∣∣∣2
 .

(4.10)

Now, we will estimate the right-hand side of the inequality (4.2). Let
us consider the norm of the arbitrary state z0 ∈ H. It is obvious (due to
normalized expansion (4.4)) that the norm of the state z0 is given by

‖z0‖2H =
∑
k∈Z
|αk|2.

From (4.5) we can derive the formulas for coefficients αk as

αk =
‖Yk‖
Ck

βk for k 6= kn − 1, kn

and

αkn−1 =
‖Ykn−1‖
Ckn−1

(
βkn−1 −

1
µkn − µkn−1

γkn

)
,

αkn =
‖Ykn‖
Ckn

1
µkn − µkn−1

γkn

for remaining cases. Then, the norm of state z0 can be presented as

‖z0‖2 =
∑
k∈Z
|αk|2 =

∑
k∈Z\{kn−1,kn}

∣∣∣∣∣‖Yk‖Ck
βk

∣∣∣∣∣
2

+
∑

k∈{kn−1}

∣∣∣∣∣‖Yk‖Ck

(
βk −

1
µk+1 − µk

γk+1

)∣∣∣∣∣
2

+
∑

k∈{kn}

∣∣∣∣∣‖Yk‖Ck

1
µk − µk−1

γk

∣∣∣∣∣
2

≤
∑

k∈Z\{kn−1,kn}

‖Yk‖2

|Ck|2
|βk|2 +

∑
k∈{kn−1}

2
‖Yk‖2

|Ck|2
|βk|2
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+
∑

k∈{kn}

(
2
‖Yk−1‖2

|Ck−1|2
+
|Yk|2

|Ck|2

)
1

|µk − µk−1|2
‖γk‖2

≤
∑

k∈Z\{kn−1,kn}
c21
|µ2k|

2

k2
|βk|2 +

∑
k∈{kn−1}

c22
|µ2k|

2

k2
|βk|2

+
∑

k∈{kn}
c23
∣∣∣µ2k∣∣∣2 |γk|2 , (4.11)

where sequences ‖Yk‖
2

|Ck|2
k2

|µ2k|
2


k∈Z\{kn−1,kn}

,

2‖Yk‖
2

|Ck|2
k2

|µ2k|
2


k∈{kn−1}

and 
1

|µk−µk−1|2

(
2‖Yk−1‖

2

|Ck−1|2
+ ‖Yk‖2

|Ck|2

)
|µ2k|

2


k∈{kn}

are bounded, so there exist constants

c21 = sup
k∈Z\{kn−1,kn}

‖Yk‖2

|Ck|2
k2

|µ2k|
2 , c22 = sup

k∈{kn−1}

2‖Yk‖
2

|Ck|2
k2

|µ2k|
2

and

c23 = sup
k∈{kn}

1
|µk−µk−1|2

(
2‖Yk−1‖

2

|Ck−1|2
+ ‖Yk‖2

|Ck|2

)
|µ2k|

2 .

Continuing to estimate norm of z0 of (4.11), we obtain

‖z0‖2 ≤
∑

k∈Z\{kn−1,kn}
c21
∣∣∣µ2k∣∣∣2 |βk|2 +

∑
k∈{kn−1}

c22
∣∣∣µ2k∣∣∣2 |βk|2

+
∑

k∈{kn}
c23
∣∣∣µ2k∣∣∣2 |γk|2

=
∑

k∈Z\{kn−1,kn}
c21
∣∣∣µ2k∣∣∣2 |βk|2

+
∑

k∈{kn−1}
c22
∣∣∣µ2kβk + (µk+1 + µk) γk+1 − (µk+1 + µk) γk+1

∣∣∣2
+

∑
k∈{kn}

c23
∣∣∣µ2k∣∣∣2 |γk|2
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≤
∑

k∈Z\{kn−1,kn}
c21
∣∣∣µ2k∣∣∣2 |βk|2 +

∑
k∈{kn−1}

2c22
∣∣∣µ2kβk + (µk+1 + µk) γk+1

∣∣∣2
+

∑
k∈{kn−1}

2c22 |µk+1 + µk|2 |γk+1|2 +
∑

k∈{kn}
c23
∣∣∣µ2k∣∣∣2 |γk|2

=
∑

k∈Z\{kn−1,kn}
c21
∣∣∣µ2k∣∣∣2 |βk|2 +

∑
k∈{kn−1}

2c22
∣∣∣µ2kβk + (µk+1 + µk) γk+1

∣∣∣2
+

∑
k∈{kn}

(
2c22 |µk + µk−1|2 + c23

∣∣∣µ2k∣∣∣2) |γk|2
≤

∑
k∈Z\{kn−1,kn}

c21
∣∣∣µ2k∣∣∣2 |βk|2 +

∑
k∈{kn−1}

2c22
∣∣∣µ2kβk + (µk+1 + µk) γk+1

∣∣∣2
+

∑
k∈{kn}

c24
∣∣∣µ2k∣∣∣2 |γk|2 , (4.12)

where sequence (
2c22 |µk + µk−1|2 + c23 |µ2k|

2

|µ2k|
2

)
k∈{kn}

is bounded, then there exists constant

c24 = sup
k∈{kn}

2c22 |µk + µk−1|2 + c23 |µ2k|
2

|µ2k|
2 .

Then, finally, estimation (4.12) of norm of z0 takes the form

‖z0‖2 ≤ c25

 ∑
k∈Z\{kn−1,kn}

∣∣∣µ2k∣∣∣2 |βk|2
+

∑
k∈{kn−1}

∣∣∣µ2kβk + (µk+1 + µk) γk+1
∣∣∣2 +

∑
k∈{kn}

∣∣∣µ2k∣∣∣2 |γk|2
 ,

(4.13)

where c25 = max {c21, 2c22, c24}. Let κ2 = m
c25

, combining estimations (4.10) and
(4.13), we obtain

κ2 ‖z0‖2 ≤ m

 ∑
k∈Z\{kn−1,kn}

∣∣∣µ2k∣∣∣2 |βk|2 +
∑

k∈{kn−1}

∣∣∣µ2kβk + (µk+1 + µk) γk+1
∣∣∣2

+
∑

k∈{kn}

∣∣∣µ2k∣∣∣2 |γk|2


≤ ‖CT (t)z0‖2H2 ,
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which means that system (4.1) is H2 (0, T ) −H exactly observable for time
T ≥ T0.

Remark 4.8. In Theorem 4.7 we have shown that system (4.1) is H2 (0, T )−
H exactly observable for large times T , that is for T ≥ T0, and due to
Corollary 4.5 we know that this system cannot be exact observable for small
times T , that is for T < T0.

Remark 4.9. Accordingly to Theorem 4.6 the system is not L2 (0, T ) − H
observable and according to Theorem 4.7 the system is H2 (0, T )−H exactly
observable. Then the open question arises—what is the optimal smoothness
requirement for the left-hand side dividing non-observable and observable
systems?

4.3 Observablitity of a Timoshenko Beam

Here we will show the application of exact observability conditions obtained
in the previous section for the exact observability problem for Timoshenko
beam system governed by (2.12) with boundary condition of the form (2.13).

The deflection of the center line of the beam at the free end will be
observed, i.e.

Y = C


w
ξ
ẇ

ξ̇

 = w(1, ·). (4.14)

Now, we present a few facts about spectral properties of the operator
of motion of Timoshenko beam system. Then, we show that the considered
system satisfies exact observability conditions stated before, (A1)–(A4).

We start with presenting that condition (A1) is fulfilled. Following [32]
we recall some notations: λn denotes an increasing sequence of (real, pos-

itive) eigenvalues of operator A1 (see (2.15)), σ(n)1 =
√
λn −

√
λn, σ(n)3 =√

λn +
√
λn, τ (n) = tan σ

(n)
3
2 if n ≡ 1, 4 mod 4 and τ (n) = − cot σ

(n)
3
2 if n ≡ 2, 3

mod 4. The operator A (see (2.14)) has an orthogonal complete (in H) se-
quence of eigenelements

Yn =


yn
zn
µnyn
µnzn

 and Y−n =


yn+1
zn+1

−µn+1yn+1
−µn+1zn+1

 (n ∈ N) (4.15)
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where

yn(x) = 2τ (n) cosσ(n)3 x− 2τ (n) cosσ(n)1 x− 2 sinσ(n)3 x

− 2
σ
(n)
1

σ
(n)
3

sinσ(n)1 x,

zn(x) = 2τ (n)
√
λn

σ
(n)
3

sinσ(n)3 x+ 2τ (n)
√
λn

σ
(n)
1

sinσ(n)1 x+ 2
√
λn
σ3

cosσ(n)3 x

− 2
√
λn

σ
(n)
3

cosσ(n)1 x,

(4.16)

with corresponding eigenvalues

µn = i
√
λn = i


2k − 1

2
π − εn if n = 2k − 1

2k − 1
2

π + εn if n = 2k

µ−n = −µn+1,

where 0 < εn and lim
n→∞

εn = 0. Proofs of the facts stated above can be found
in Lemma 2.2 in [32], Section 3 in [33] and Section 2 in [53].

The following lemmas show that the considered Timoshenko beam system
satisfied condition (A2), (A3) and (A4), respectively.

Lemma 4.10. The difference between a pair of eigenevalues µ2k, µ2k−1 is
asymptotically equivalent to 1

|k| , as |k| → ∞, i.e. |µ2k − µ2k−1| � 1
|k| .

Proof. The proof is a consequence from Lemma on approximation of series
in [53].

Lemma 4.11 (see Lemma 3.1 in [35]). The system

{
eµ2kt

}
k∈Z
∪
{
eµ2kt − eµ2k−1t

µ2k − µ2k−1

}
k∈Z

(4.17)

is a Riesz basis for L2 (0, 4).

Lemma 4.12. The norm of the eigenvector Yk of the operator A is asymp-
totically bounded from below and above by k.

Proof. Let us study the norm of the eigenvector Yk,

‖Yk‖2H =

∥∥∥∥∥∥∥∥∥


yk
zk
µkyk
µkzk


∥∥∥∥∥∥∥∥∥

2

H

= 2|µk|2
1∫
0

yk(x)2 + zk(x)2dx.
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Using the form of yk(x) and zk(x) given in (4.16), we get

1∫
0

yk(x)2 + zk(x)2dx = 2
(
τ 2k + 1

)( λ

σ23
+ 1

)

+
(
τ 2k − 1

) 1
σ3

(
1− λ

σ23

)
sin (2σ3)

− 4
(
τ 2k +

σ1
σ3

+
λ

σ23
+ τ 2k

λ

σ1σ3

)
1

σ1 + σ3
sin (σ1 + σ3)

+ 4
(
τ 2k

λ

σ1σ3
− λ

σ23
+
σ1
σ3
− τ 2k

)
1

σ1 − σ3
sin (σ1 − σ3)

+ 2τk
1
σ3

(
1− λ

σ23

)
(cos (2σ3)− 1)

+ 2τk

(
λ

σ1σ3

1
σ1
− 1
σ3

)

+ 4τk

(
λ

σ23
− λ

σ1σ3
+
σ1
σ3
− 1

)
1

σ1 + σ3
cos (σ1 + σ3)

+ 4τk

(
σ1
σ3

+ 1− λ

σ23
− λ

σ1σ3

)
1

σ1 − σ3
cos (σ1 − σ3)

+ 4τk

(
λ

σ1σ3
− σ1
σ3

)
2σ1

σ21 − σ23

+ 4τk

(
λ

σ23
− 1

)
2σ3

σ21 − σ23

+
(
τ 2k −

σ21
σ23

+
λ

σ23
− τ 2k

λ

σ21

)
1
σ1

sin (2σ1)

+ 2
(
τ 2k +

σ21
σ23

+
λ

σ23
+ τ 2k

λ

σ21

)
.

Taking into the fact that [53]
lim sup
k→∞

τ (k) =
tan 14 + 1
1− tan 14

,

lim inf
k→∞

τ (k) =
tan 14 − 1
1 + tan 14

,
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we see that {τk} is bounded and separated from 0, therefore

lim sup
|k|→∞

1∫
0

yk(x)2 + zk(x)2dx = 8

(tan 14 + 1
1− tan 14

)2
+ 1

 ,
lim inf
|k|→∞

1∫
0

yk(x)2 + zk(x)2dx = 8

(tan 14 − 1
1 + tan 14

)2
+ 1

 .
Hence, we obtain, for large k’s, that

‖Yk‖ ≈
√

16 |µk|2 (τ 2k + 1)
≈M1 |µk| ≥M2|k|

and

‖Yk‖ ≈M1 |µk| ≤M3|k|,

where M1,M2 and M3 are positive constants. Thus, ‖Yk‖ � |k|.

Similar considerations as in the proof of Lemma 4.12 allow us to state
the following

Lemma 4.13. Observe that

lim
|k|→∞

|Ck|2 = lim
|k|→∞

y2k(1) = 16. (4.18)

Now Theorems 4.6, 4.7 and Lemmas 4.10–4.13 allow us to state the main
result of this chapter.

Theorem 4.14. The Timoshenko beam system (2.12)–(2.15) with observa-
tion of a form (4.14) is not L2 (0, T )−H exactly observable for any T > 0,
and is H2 (0, T )−H exactly observable for T ≥ 4.
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The following dissertation is devoted to the analysis of stability and observ-
ability of a particular model of vibrations in beams, the so-called Timoshenko
beam model.

The structure of the work is as follows: after preface there are four chap-
ters. The first two of them are devoted to the introduction of basic definitions
and theorems, which are necessary in the main part of the dissertation.

In the third chapter, we analyze stability of Timoshenko beam model
including damping effects. To this end, we carry out spectral analysis of the
operators associated with differential equations describing the system under
consideration. Then we prove that in some particular cases those operators
satisfy spectrum determined growth condition, which means that the location
of the spectrum allows us to determine the stability margin of the system.
Furthermore, we investigate the existence of an optimal decay rate. At the
end we compare the obtained results with other damping operators.

In the fourth chapter, we consider the problem of exact observability of
a general class of distributed parameter systems in Hilbert spaces. We prove
that the system with some specific assumptions on spectrum and eigensystem
is not exactly observable in default topology setting. Then we find stronger
topology for state observation for which the system becomes exactly ob-
servable. In the end, we show that clamped-free Timoshenko beam system
satisfies obtained results.
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różnicowe

Niniejsza rozprawa poświęcona jest analizie stabilności i obserwowalności
szczególnego modelu drgań występujących w belkach, tak zwanemu mode-
lowi belki Timoszenki.

Struktura pracy jest następująca: po przedmiowie znajdują się cztery
rozdziały. Dwa pierwsze z nich poświęcone są wprowadzeniu podstawowych
twierdzeń i definicji, które są niezbędne w głównej części rozprawy.

W trzecim rozdziale analizujemy stabilność modelu belki Timoszenki z
uwzględnieniem efektów tłumienia. W tym celu przeprowadzona została anal-
iza spektralna operatorów związanych z równaniami różniczkowymi opisu-
jącymi rozważany układ. Następnie udowadniamy, że w niektórych przy-
padkach operatory te spełniają spektralny warunek wzrostu, co oznacza, że
położenie spektrum pozwala nam wyznaczyć zapas stabilności układu. Pon-
adto, badamy istnienie optymalnego współczynnika wygaszania. Na koniec
porównujemy uzyskane wyniki z innymi operatorami wygaszania.

W czwartym rozdziale rozważamy problem dokładnej obserwowalności
ogólnej klasy układów z rozproszonymi parametrami w przestrzeniach Hilber-
ta. Udowodniliśmy, że układ z pewnymi szczególnymi założeniami dotyczą-
cymi spektrum i układu własnego, nie jest dokładnie obserwowalny w domyśl-
nej topologii. Następnie znajdujemy silniejszą topologię dla obserwacji stanu,
dla której układ staje się dokładnie obserwowalny. Pokazujemy, że zaczepiona
belka Timoshenki spełnia otrzymane założenia.

7.04.2021 r.
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